50 YEARS OF RESEARCH

 AT THE BELGIAN INSTITUTE FOR SPACE AERONOMYEDITORIAL BOARD

FOREWORD

Direction Board
Martine De Mazie
Scientific BoardScientific Board
Crist Amelynck, Christine Bingen, Simon Chabrilatat

$$
\begin{aligned}
& \text { Crist Amelynck, Christine Bingen, Simon Chabrillat, } \\
& \text { Frank Daerden, Johan De Keyser, Martine De Mazere }
\end{aligned}
$$

and Ann Carine Vandaele.
Editorial Support
Stéphanie Fratta, Sophie Robyns, Umar Sayyed
and Tim Somers
Responsible Editor
Belgisch Instituut voor Ruinte-Aeronomie
stitut d'Aéronomie Spatiale de Beligique - (BIRA-IASB)

This book was written on the occasion of the $50^{\text {th }}$ anniversary of the Belgisch Instituut voor Ruimte-Aeronomie
Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB). It is intended to present a large part of the scientific studies carried out during 50 years at BIRA-IASB. This is neither an exhaustive activity report nor a scientific textbook on aeronomy.

The addressed topics illustrate the historical evolution of scientific researches in the field of aeronomy since its infancy, in the sixties. Only a minority of topics is not reported.

Special thanks go to all external authors:
Guy Brasseur, Dirk Frimout, Ghislain Grégoire, William A. Lahoz, Marie-Claude Limbourg and Jean-Pierre Pommereau.
Their affliation is mentioned explicitly in the book. All other authors and contributors are from BIRA-IASB or have been
working there until their retirement. The authors are responsible for the content of their chapters and sections..
BIRA-IASB gratefully acknowledges the financial support received for this publication from the Federal Public Planning Service Science Policy, also known as Belgian Science Policy (BELSPO).
$\underset{\text { belspo }}{\text { Hilin }}$ be

Foreword	
1. PREFACE	Dirk Frimout
2. SPACE AERONOMY: A HISTORICAL INTRODUCTION	Paul C. Simon
3. THE SUN AND THE EARTH'S ENVIRONMENT	Paul C. Simon
Introduction	Paul C. Simon,Viviane Pierrard and Joseph Lemaire
THESUN	Paul C. Simon
UITravolet Solar irradince and atmosheric processes	Paul C. Simon
SOLAR ULTrAVIOLET IRRADIANCEVARABBLITY	Paul C. Simon
SOLARWIND	Vivane Pierrard and Joseph Lemaire
4. THE MAGNETOSPHERE: FROM FIRST DISCOVERIES TO CURRENT RESEARCH	Johan De Keyser
Introduction	Johan De Keyser
THE MAGNetosphere	Johan De Keyser
THE PLASMASPHERE	Joseph Lemaire andViviane Pierrard
THE IONOSPHEREAND ITS COUPLINGTOTHE MAGNETOSPHERE	Johan De Keyser and Michel Roth
Energeetic Particles In SPACE	Norma Crosby
5. FROM THE UPPER ATMOSPHERE TO THE TROPOSPHERE: THEORIES AND MODELS	Jean-François Müller and Simon Chabrillat
Introduction	Simon Chabrilla and Guy Brasseur (MP-M, NCAR)
THE UPPER ATMOSPHERETHE RELLM OF SATELITES	Simon Chabrilat, Guy Brasseur (MPIM, NCAR) and Paul C. Simon

THE MESOSPHERE AND LOWER THERMOSPHERETRANSITION REGIONS AND CURRENT RESEARCH	Simon Chabrillat and Guy Brassur (MP-M, NCAR)	75
THEORETCALAND MODELIING STUDIES Of The stratosphere	Sébastien Viscardy and Quentin Errera	78
TROPOSPHERIC MODELLING	Jean-François Müler and Trissevgeni Stavrakou	8
6. BALLOON OBSERVATIONS	Crist Amelyck and Paul C. Simon	86
INTRODUCTION	Jean-Pierre Pommereau (LATMOS)	88
solar ultraviolet radiation	Paul C. Simon	91
INFRARED REMOTE SENSING From stratospheric balloons	Chrisiain Muller	3
balloon Intercomparison campaigns	Jean-Pierre Pommereau (LATMOS) and Paul C. Simon	
MASS SPECTROMETRY	Crist Amelyck and Niels Schoon	9
7. FiRSt orbital observations	Paul C. Simon	102
SpACELAB I AND ATMOSPHERIC LABORATORY FOR APPLICATIONS AND SCIINCE MISSIONS	Paul C. Simon	104
THE GRILE SPECTROMETER	Christian Muller	107
THE SOLAR SPECTRUM EXPERMENT	Paul C. Simon and Didier Gillotay	09
INVESTIGATION OF ATMOSPHERIC HYDROGEN AND DEUTERIUM THROUGH MEASUREMENT OF LIMAN-ALPHA EMISSION	Paul C. Simon	12
THE EUROPEAN Retrievable carkir	Paul C. Simon	4
REMOTE SENSING OF THE EARTH'S ATMOSPHERE BYTHE SPACEBORNE OCCULTATION RADIOMETER	Didier Fussen and Flip Vanhellemont	115
THE SOLAA SPECTRUM INSTRUMENT ON BOARD EURECA	Paul C. Simon	117
8. SATELLTE OBSERVATIONS	Paul C. Simon	118
INTRODUCTION	Paul C. Simon	120
the global ozone monitoring experiment	Jean-Christopher Lambert and Paul C. Simon	25

Ihenvironmental satelute		
THE SCANNING IMAGING ABSORPTION SPECTROMETER FOR ATMOSPHERIC CHARTOGRAPHY: IOYEAR MEASUREMENTS OF OUR CHANGING ATMOSPHER	Jean-Christopher Lambert	
global ozone monitoring by occultation of stars on board ENVISAT: IOYEARS OF STELLAR OCCULTATIONS	Didier Fussen, Filip Vanhellemont and Cédric Tétard	
THE GLOBAL OZONE MONITORING EXPERIMENT-2 ON BOARD METOP GLOBAL MONITORING OF TOTAL OZONE AND THE TROPOSPHERIC COMPOSITION	Michel Van Roozendal	
The INFRARED ATMOSPHERIC SOUNDING ITTREREROMETER	Sophie Vandenbussche and Evelyn De Wachter	
MULTISPPACECRAT EXPLORATION OFTHE MAGNETOSH ERE WITH Cluster	Johan De Keyser	140
THE SOLAR SPECTRUM EXPERIMENT ON BOARD THE INTERNATIONAL SPACE STATION	David Bolsée and William Peetermans	14
THEATMOSPHERIC CHEMSTRY EXPERMENT	Martine De Mazière and Didier Fussen	145
THE ENERGETIC PARTICLETELESCOPP INSTRUMENT	Viviane Pierrard and Ghislain Grégoire (UCL)	14
THE ATMOSPHERIC LIMB TRACKER FOR THE INVESTIGATION OFTHE UPCOMING STRATOSPHERE MISSION:THE FIRST BELGIAN SOUNDER OFTHE EARTH ATMOSPHERE	Didier Fussen, Emmanuel Dekemper, Didier Pieroux, and Filip Vanhellemont	
THE PICOSATELLITE FOR ATMOSPHERIC AND SPACE SCIENCE OBSERVATIONS MISSION:TOWARD GEOPHYSICAL MEASUREMENTS FROM MINIATURIZED SPACE SENSORS	Didier Fussen, Didier Pieroux, Sylvain Ranvier and Johan De Keyser	153
9. THE ENDANGERED OZone LAYER	Paul C. Simon	156
Introduction	Guy Brassur (MP-M, NCAR) and Paul C. Simon	158
THE SUPERSONIC AIRCRATTHREAT TOTHE OZONE LAYER	Christian Muler	161
THE HALOCARBONTHREAT AND POLAR OZONE	Paul C. Simon	163
OZone and climate changes	Martine De Mazière	

10. GROUND-BASED AND IN SITU OBSERVATIONS	Martine De Maziere and Michel Van Roozendael	170
Introduction	Martine De Mazière, Michel Van Roozendael Crist Amelynck and Hervé Lamy	72
THE NETWORK FOR THE DETECTION O FATMOSPHERIC COMPOSTIION CHANGE	Martine De Mazière, Michel Van Roozendael and Jean-Christopher Lambert	74
THETOTAL CARBON COLUMN OBSERVING NETWORK	Martine De Mazėere and Filip Desmet	180
THE BLLIIAN SOLAR UVVVISLLE MONTORING NETWORK	Didier Gillotay	181
TROPOSPHERIC TRACE GAS MONITORING USING MAXDOAS	Michel Van Roozendael and Francoois Hendrick	84
Blogenicvolatle organic compounds	Crist Amelynck and Niels Schoon	186
Satelitevaldation	Jean-Christopher Lambert	89
belgian radio meteor stations	Hervé Lamy	192
MAPPING AIR QUALITY FROM AN UNMANNED AERIALVEHICLE	Alexis Merlaud and Michel Van Roozendael	194
II. LABoratory studies	Ann Carin Vandaele and Crist Amelynck	198
Introduction	Ann Carine Vandaele and Crist Amelynck	200
MOLECULAR OXYGEN ABSORPTION CROSS SECTION BETWEEN I75 AND 205 NM	Paul C. Simon	202
HALOCARBGNS ABSORPTION Cross sections	Didier Gillotay and Paul C. Simon	203
AtMOSPHERIC TRACE Constituents	Ann Carine Vandaele and Christian Hermans	206
CHEMICAL IONIZATION STUDIES OF ATMOSPHERIC COMPOUNDS	Crist Amelynck and Niels Schoon	208
12. AEROSOLS, FROM PIONEERING WORK TO global survey	Christine Bingen	211
Introduction	Christine Bingen	212
AEROSOL BALIOON FLIGHTS	Christian Muller and Christine Bingen	214
$\overline{\text { Stratospherl Satelute observations occultation and Imaing }}$	Filip Varhellemont	217

TWLIGHT OBSERVATIONS	Nina Mateshviif	22
CHARACTERIZATION OF STRATOSPHERIC AEROSOLS	Christine Bingen and Christian Muller	22
TROPOSPHERIC REMOTE SENSING OBSERVATIONS BY INFRARED ATMOSPHERIC SOUNDING INTERFEROMETER	Sophie Vandenbusshe	227
13. PLANETARY ATMOSPHERES	Ann Carine Vandaele and Frank Daerden	230
Introduction	Ann Carine Vandaele and Frank Daerden	232
THE PHobos observations	Christian Muller	23
MAATIAN ATMOSPH ERE EXPLORATIONWITH MARS EXPRESS	Nina Matesthili and Eddy Neefs	236
Venus atMosphere Exploration wthvenus Express	Ann Carine Vandale and Edyy Neefs	239
NADIR AND OCCUULTATION FOR MARS DISCOVERY AND EXOMARS	Ann Carine Vandaele and Edy Neefs	24
REmOTE SENSING Of Aerosols on Mars An Venvus	Valérie Wiquet	245
Modeling of planetary atmosheres	Frank Daerden	24
MASS SPECTROMETRY ON ROSETA	Johan De Keyser and Frederik Dhooghe	24
14. SCIENCE AND APPLICATIONS	Michel Kruganski	25
SATELITETRAECTORY Forecasting	Paul C. Simon	25
SPACEWEATHER	Michel Kruglanki and Neophytos Messios	256
Chemical data assimlation	Quentin Errera, William A. Lahoz (NILU) and Simon Chabrillat	26
DETECTION OFVOLCANIC ERUPTIONS	Nicolas Theys and Hugues Brenot	26
15. TECHNICAL SUPPORT AND EXPERTISE	Eddy Neefs, Jeroen Maes, Sophie Berkenbosch, and Johan Bulcke	26
introduction	Eddy Neefs and Johan Bucke	268
Informationtechnology	Johan Bucke	269

Electron	Eddy Neefs, Sophie Berkenbosch and Dennis Nevejians	
hanical design and construction	Eddy Neefs, Jeroen Maes, Sophie Berkenbosch, Emiel Van Ransbeeck and Dennis Nevejans	274
IMPortant Contributions to science nstrumentation	Eddy Neefs, eroen Maes and Sophie Berkenbosch	275
16. SPACE OPERATIONS AND KNOWLEDGE management	Didier Moreau	\%
NTrooduction	Christian Muller and Didier Moreau	O
atLas MISSION Operations.THE SPACE Remote operation centre	Didier Moreau and Chisitian Muller	281
THE belgian user support and operations centre	Didier Moreau and Marie-Claude Limbourg	2
ODISSEA AND CERVANTES MISSIONS	Marie-Claude Limbourg and Didier Moreau	283
SOLAR ANDTHE ATMOSPHERIC SPACE INTERACTION MONITORING INSTRUMENT	Alice Michel and Nadia This	284
PICARD	Michel Anciaux and Claudio Queirolo	285
MULT-PURPOSE END-TO-END ROBOTIC OPERATION NETWORK telerobotics	Karim Litefi and Rachid Abjij	287
Preparing the long term space data preservation	Christian Muller and Didier Moreau	8
17. CONCLUSIONS AND PERSPECTIVES	Martine De Mazière, Johan De Keyser, and Didier Fussen	290
LST EIRA-ASB PRESONNEL		298

ACKNOWLEDGMENTS
BIRA-ASS gratefilly acknowledges the financial support received throughout its 50 years of history, allowing the institute to move
forward and tackle new research challenges
We want to express our special thanks to
Federal Public Planning Service Science Policy, also known as Belgian Science Policy (BELSPO), formerly Federal Office for
Scientific, Technical and Cultural Affairs (OSTC), Science Policy Office (SPO);
Centre National de la Recherche Scientifique (CNRS):
Centre National d'Etudes Spatiales (CNES);
European Space Agency (ESA), including the European Space Astronomy Centre (ESAC), the European Space Operations Centre
(ESOC), the ESA Centre for Earth Observation, also known as the European Space Research Institute (ESRIN), and European Space Research and Technology Centre (ESTEC);

European Organistion for the Explolitation of Meteorological Satellites (EUMETSAT)
Nationaal Fonds voor Wetenschappelije Onderzoek (FWO):
National Fonds voor Wetenschappelik. Onderzoek (fWO);
Institut pour l'Encouragement de la Recherche scientifique dans l'Industrie et I'Agriculture (RSIA), now Fonds pour la formation la Recherche dans I'ndustrie et dans ' 'Agriculture (FRIA);
Agentschap voor Innovatie door Wetenschap en Technologie (IWT)
International Association for the Promotion of Cooperation with Scientists from the New Independent States of the Former Soviet Union (INTAS);
LOTTO;
PROgramme de Développement d'Expériences scientifiques (PRODEX):

- Société nationale industriele aérospatial (SNIAS),

Chemical Manufacturing Association (CMA).
Of their long-term funding support
We aso greatly appreciate the in-kind contribution and support by
Canadian Space Agency and University of Waterlo
Canadian Space Agency and University of Waterloo;
Centre des Etudes Terestres et Planétares, St Maur - Paris (CETP): - European Centre for Medium-Range Weather Forecats (ECMWF);

Institute of Atmospheric Physics, Chinese Academy of Sciences, China (IAP, CAS)
International Space Science institute, Bern (ISSS)
Kathoieke Universiteit Levven (KULeuven);
Kooninklik Meteorologisch Institutut - Institut Roval Mété
Koninkilik Nederlands Meteoralogisch Institutut (KNMI)
Laboratoire de I'Atmosphère et des Cyclones (LACy), Université de La Réunion/CNRS/Météo-France:
Laboratore d'Optique Atmosshérique, Université Lille I,Villeneuve d'Ascq (LOA):
-Laboratoire de Physique et Chimie de 'IEnvironnement et de 'IEspace, Orléans, France (LPC2E)
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder (LASP, CU-Boulder)
LATMOS (see Service d'Aérononie)
National Aeronautics and Space Administration (NASA)
National Center for Atmospheric Research (NCA)
National Center for Atm
Open University (OU);
Physikalisches institut Università Bern, Switserland (PUB);
Russian Space Research Institute (KI):

- Service d'Aéronomie, (France), now Laboratoire atmosphères, miileux et observations spatiales (LATMOS)

South West Research Institute, Boulder US (SWR))
Universit́ Catholique de Louvain (UCL)
Universtie de Bruxeles Libre (ULB);
Universiteit Gent (UGent);

- Université de Namur, formerly FUNDP:

Universite Pierre et Marie Curie (Paris 6), Uusieu;

- Universiteit Antwerpen (UA);

Vlaamse linsteling voor Technologisch Onderzoek (VITO);
Vrije Universiteit Brussels (NUB):
World Meteorological Organization - Science Advisory Group - UV Solar Radiation (WMO SAG UV:

We apologize to those we might have forgotte

Space Shuttle launch (credit: NASA) At the time when the Belgian Institute for Space Aeronomy was created, aeronomy was a science relatively unknown to the general public. The term aeronomy was first introduced in 1946 by Professor Sydney Chapman assigned in 1953 as President of the Special Committee for the International Geophysical Year (IGY) in 1957-58 who defined it as the science of the upper region of the atmosphere, where dissociation and ionization are important Most fittingly, it is during the IGY that the space age begins with the launch of the first artificial satellite, Sputnik y the USSR.
Located next to the Royal Observatory and the Royal Meteorological Institute in Uccle the Belgian Institute for Space Aeronomy was created in 1964 under the initiative of Professor Baron Marcel Nicolet with the ful support of King Baudouin. Professor Nicolet was an internationally well-known scientist of the Meteorologica nstitue, who in iss was assigned as Secretary-General or andien research and administration earned him honors such as the Guggenheim prize.

Professor Nicolet became the first director of the Belgian Institute for Space Aeronomy.The Institute commenced its activties on the Ist of January 1965 , provisionally in a building of the Meteorological Institute, but later on it moved into its own buidangs. Foliowing the GY, Professor Nicolet had been able to gather around him a young anicious team of collaborators and the closest formed the first core of the scientic personnel. Buicang on his international experience, he insisted that the Institute be multiciscipilinary, meaniing, composed of a strong divereical aivion, that worked closely together wih an experimental focp, win the supporiof a techica Nivion. his approach enabled che Institute to make use of the new space age tecrics to perform in sit measurements in the high atmosphere.

As a young engineer. I started my career in this newly created institute. Also to me, aeronomy was an unknow science. All I knew was that it studied the higher atmosphere and that space experiments would be required - fulfill this task. That aspect of the job was very attractive to me. The young Institute started with plenty of mber. Baron MarcelAckerman, we built instruments to perform space experiments, but with our lack of experience and money, we could not make use of sounding rockets or saeles,

 stratosphere during several hours. Stratospheric balloons were called the "satellites of the poor" but they fitted very well our research which focused on the stratosphere. Our experimental research concerned a priori the ery wif of the ozone byer and the utraviolet light of the Sun both not measurable with Earth based experiments

In 1970, the scientific emphasis moved worldwide to the problem of global pollution in the stratosphere, specially the chlorofurocarbons and nitric oxides This was partly trigsered by an economic interest as bis especially the chlorofluorocarbons and nitric oxides. This was partly triggered by an economic interest as big airplane producers IIke Aerospatiale in France and Boeing in USA, planned the construction of supersonic
airplanes, intended to fly in the stratosphere. People were afraid that soon a large flotilla of supersonic airplanes, airplanes, intended to fly in the stratosphere. People were afraid that soon a large flotill of supersonic airplanes, oxides would attack the ozone layer.This would have a major impact on our atmosphere. With the experience of stratospheric balloons, the Belgian Institute for Space Aeronomy was in a good position to perform the required measurements and so, the Institute added the measurement of vertical profiles of a number of important minor constituents by absorption measurements in the near infrared part of the spectrum to its experimental program. constituents by absorption measurements in the near infrared part of the spectrum to its experimental program.
A close collaboration was started with ONERA in France, who had developed an instrument, specially adapted A close collaboration was started with ONERA in France, who had developed an instrument, specially adapted
for this purpose: the Grille Spectrometer. With this instrument, vertical profiles of several minor constituents for this purpose: the Grille Spectrometer. With this instrument, vertical profiles of several minor constituents
could be measured at different latitudes. This allowed us to acquire quite some data, important for verification could be measured at different latitudes. This allowed us to acquire quite some data, important for verification
of the mathematical models developed by the theoreticians in the Institute. All these results contributed to the of the mathematical models developed by the theoreticians in the Institute. All these results contributed to the
study of the greenhouse effect and the global warming of the Earth. The arrival of the Space Shuttle allowed for the first time to perform global measurements, and hence, the Grille Spectrometer was proposed to fly on the joint NASA-ESA mission Spacelab I.

Dirk FFimout during the Altas 1 mission

In collaboration with CNRS in France, the Belgian Institute for Space Aeronomy had also developed two othe instruments, SOLSPEC and ALAE, both of which performed measurements of the Sun, and that were selected for the Spacelab I mission as well. In this way, the Institute was involved in three experiments on the Spacelab I flight in November 1983. They all were successful and brought a quantity of good data for the modelling of the Stratosphere. All three experiments flew a second time on the ATLAS I mission in 1992. I was proud to have these experiments on board and to be able to control their good functioning during the flight.
Since then, the Belgian Institute for Space Aeronomy has evolved and has become more and more internationa Many new groups were created within the Institute and have contributed to its international recognition. Th activities and the research results related to the magnetosphere and plasma physics, to mass spectrometry, to planetary atmospheres and to so many other subjects, are all discussed in this publication.
The success behind this young institute is due to many factors, first of all the well-chosen multidiscipinary composition of the team of scientists, technicians and support teams, al delivering high-quality work. From the

 licy copined with thew . thallenges, which will always attract young scientists.
personally have many reasons to thank the Belgian Institute for Space Aeronomy. Specifically, I had the pportunity to expand my talents, which included preparing a doctoral thesis and spending a postdoctoral ye the University of Colorado in the United States. For many years, I was Iucky to work in a highly qualified team of scientists. with dedicated technicians and with sood administrative support Together we got to know the weetness of success during the launch campaigns, but also the deceptions of failures

The Belgian Institute for Space Aeronomy was also my springboard to space. Thanks to their support, I got the unique opportunity to become a candidate to participate in the ATLAS I mission, and this support neve ceased. Even when I left the Institute, I still felt closely linked to it. I continued to follow their successes. I stil admire their creativity, their dedication and their scientific performances. I know that I can always count on their expertise when I need information. On the occasion of this 50th anniversary, I want to thank them all for the help they have given. Congratulations to the young, dynamic team that is taking care of the continuity and future of the Institute

"If we long for our planet to be important, there is something we can do about it. We make our world significant by the courage of our questions and the depth of our answers'
(Carl Sagan)

SPACE AERONOMY A HISTORICAL
INTRODUCTION
Paul C. Simon Meeting of the Special Committe ofthe IGY in Brussen
From left to tight vadidini Beloussov, Lloyd Berkner, Marcel Nicolet, Jean Coul
(coutresy V fie magzaine)
the evening of October $4^{4 h} 1957$, the Soviet embassy in Washington was hosting a reception for the members informed of very surrpisingsical Year (IGY) Committee, when Lloyd Berkner. Vice-President of the IGY, was informed of very surprising news. He immediately informed the other guests that a Soviet satelite was orbiting success".

Lloyd Berkner's surprise was shared worldwide. The news of Sputnik-I being launched caused considerable emotions: enthusiasm in the eastern countries, astonishment in the western countries and admiration in the third countries.
The Soviet Union had suddenly seen its prestige increased, its military power re-evaluated and it was ready to take political benefit from this spectacular success. The USA were worried about the military implications an their obvious loss of technical and scientific supremacy. The cold war was taking a new dimension: space. Se space era was taking win his three major pilars. scientifc, political and strategic. Its scienticic dimensic .
 as BIRA-IASB), as Secretary-General. This initiative concretised the necessary synoptic vision for the study of the Earth atmosphere had been officially a .

The IGY was preceded by three international scientific initiatives.
1850, Mathew Fontaine Maury, Director of the Naval Research Laboratory, proposed an international agreement on the coordination of meteorological observations at the sea surface. WIthin this framework, maritime conference was organized in Brussels in 1853 under the chairmanship of Adolphe Quetelet, Director of the Royal Observatory of Belgium, precisely a hundred years before the first meeting of the special IGY committee. Instrument calibration and validation problems such as the barometer and the thermometer were already addressed.
The first International Polar Year (IPY) (1882-83) initiated by Karl Weyprecht, from the Austrian Navy, led to important instrumental developments.

The second IPY (1932-33), marking its 50 ${ }^{\text {th }}$ anniversary, took place under a difficult economic context. During this period, space technology as well as the study of the chemical and physical processes of the atmosphere was only in its infancy

HISTORICAL SUMMARY

It took 2000 years for Archimedes' theory, transposed to gas, to be applied to balloons
On June $4^{\text {th }}, 1783$, the first fight of a hot air balloon was reaized by the Montgolfier brothers. It lasted 20 minutes and flew at an altitude of 20 m . On 21 November 1783 , Pilatre de Rozier and the Marquis d'Arlandes made their first manned fight during 20 minutes. On the 1st of December 1783, Charles and Robert, who had previously experienced the use of hydrogen, made a flight of 2 hours, covering a distance of 40 km . On the first manned space fights, including the filights of two Belgian astronauts, Viscounts Dirk Frimout and Frank De Wine brought such equivelent enthusism as these discoveries of the late $18^{t h}$ centur

Twenty years later, on July $18^{\text {n., }} 1803$, Robertson and Lhoest made a first scientific ascent that included magnetic measurements. They reached an altitude of 7000 m . This flight was followed in 1804 by a fight reaching 4000 m (Gay-Lussac and Biot), but it took another fifty years for new strictly scientific ascents to take place. In 1862 , Glaisher and Coxwell flew at an altitude of $11,000 \mathrm{~m}$. However, the aerostats were no very efficient for atmospheric studies. The synoptic vision of physical parameters was established through the first tratatospheric soundings by means of balloons were realised in 1896 ._.

During that period, the aeronomic study of planetary atmospheres was exclusively based on data resulting from ground-based observations, as well as on experimental interpretations from scientific research in the domain of spectroscopy or radio-electricit
In the past, one could only deal with indirect methods, such as deductions from an interpretation of the Varations of the terrestrial magnetism, or simply observations (with the naked eye at first, photographic late on) of I Iminous phenomena appearing at high altitude (over 80 km) at twiilght, such as noctilucent clouds shooting stars or the aurora borealis. At that time, the meteor trails in the sky could not yet be interpreted in the context of their destruction in the upper atmosphere. The aurora borealis had been the subject of
 magnetism
Following the discovery of the electron, Birkeland suggested in 1896 the idea that polar auroras resulted from elecrons emitted by the Sun colliding with terrestrial molecules. In this way, the atmospheric effect of them to the Polar regions, was introduced.
the end, spectroscopic observations of the radiation associated the to aurora boreails were made, but the spectra identifications were in a too early stage to actually bring new knowledge on the constitution of attributed to an unknown element. the gecocoronium.
Later on, studying the frequency of the appearance of the auroras allowed an approach secular cycles of the solar activity and corresponding climatic periods during this millennium
The kinetic theory of gas was now sufficienty developed (BBItzmann, Maxwell) to allow a theoretical approach as well as of other planets of the solar system could only be revealed gradually.
The end of the Phlogiston theory during the 18^{h} century (Lavoisier, Schraele, Priestley and Cavendish) led 1o the recognition of the existence of two main atmospheric gasess: oxygen and nitrogen. The nitric oxides today a well-known pollutant, were produced by Cavendish in a discharge of dry ar where oxygen was added. elium (Kayser) and argon (Ramsay) in the terrestrial atmosphere in 1895 and the detection of other noble gases (krypton, neon and xenon) thanks to liquid air, in 1898.

The first real spectroscopic detection of ozone was reaized by Chappuis in 1880. One year later, Hartley discovered in his laboratory a strong absorption band in the ultraviolet indicating that this constituent was Shielding the Earth from the abiotic solar ultraviolet radiation under 300 nm . In 1890 , Huggins discovered a and Strutt in 1917.

Geophysics and more specifically the study of planetary y tmospheres really advanced in the early $20^{\circ} \mathrm{c}$ century Maior contributions on the properties of the upper atmosphere saw daylight. Indeed, in 1901 , Marcon established the first transatlantic radio link between Poldhu in Cornwall and Newfoundland in St Jan de TerreNeuve. Soon afterwards, this was explained by the existence of an electrical conduction layer in the upper atmosshere (1902 , Kennely, Heaviside). This reflecting layer of the radio-electric wave must be constituted onizing the upper atmosphere constituents. This result spotighted the hypothesis introduced in 1888 by Steward and again recoognized by schuster in 1888 , suggesting that part of the terrestrial magnetic field was associated to electric currents resulting from the existence of ions and electrons in the upper atmosphere.

Gordon Miller Buurne Dobson (1889-1976),
Physicistand meterorocosistat the University of ox

24
24 Chaper 2
,

The First Worla War cia not allow any progress in the development of knowledge of the upper atmosshere Unless through the unexpected resut of the abnormal propagation of the cannon noise. Indeed, zones of was attributed to the echo off sounding wave refectect by by the stratosphere where the temperaturee is highe than in the tropoppause. More recently, the explosion of grenades at high altitude was used to determine the temperature at altitudes up to 85 km

AtterWorldWar 1 , several significant findings helped to recognize aeronomy as a basic science for atmospheric environment.

Spectroscopic studies moved towards the identification and characteristic emissions of the main constituens of the atmosphere, nitrogen and oxygen. It was thus recognized that oxygen appears in the form of atoms above 100 km , while nitrogen maintains itsef in a molecular form at higher altitude. Neverthelss, when
became clear that the atmosphere constituents are in mixing above 20 km , the problem of the diffusion gas in the gravity field led to the consideration that the distribution of each gas following the Dalton Law, ie. following its own mass, had to occur at a certain altitude

Meanwhile, radio amateurs had discovered the propagation of short waves at long distance (1921 - 1925). In 1924, Larmor, with his theory of the electron refraction, provided a new field of scientific investigation to th study of the ionosphere as well asto new concepts for the earonomy. Moreover the radio-electric cropagation
by the study of echoes of short waves (1926 . Breit and Tuve) and by the analysis in the framework of magnetoby the study of echoes of short waves (1926, Breit and TUve) and by the analysis in the framework of magneto Ionic theory (1932,Appleton) could be adapted to a sounding of the ionosphere, i.e.t the entire region above
60 km , where imagination had placed electrons produced by ionization of atoms and of molecules under the effect of both the ultraviolet radiation and the X solar rays.

Finally, thanks to the development of constanty mproving speers saphs, the night glow of the nocturnal sty was analysed through its molecular and atomic emissions.
The progress in aeronomy thus allowed defning how chemical reactions could lead to luminous emissions, at the moment World War 2 started.

The first measurements of stratospheric ozone started in 1920 with a study on absorption of the solar ultraviolet radiation in the bands of Hartley and Huggins, leading to the first determination of the total ozone content in the atmosphere. Gordon Dobson designed an instrument based on absorption spectroscopy of in
the near ultraviolet which was installed for the first time in Arosa (Swwiterland) in 1927 befor being deployed
ina network within the framework of the IGY in 1957-1958. The photochemical theory on the ozone layer was introduced in 1929 by Sydney Chapman
p parallel, scientific and technical bases of the space conquest started in the early $20^{\text {nt }}$ century. In 1903.
 the same field, Sergei Korolev soon overtook the American technical realizations, tracing the prolegomena of the future race to the Moon.

The eerostat was, however, not totally abandoned; the Swiss Auguste Picard and Paul Kipfer on board the FNRS gondola penetrated the stratosphere (15781 m) for the first time on the $277^{\text {t }}$ of May 1931 with a ressurized gondola, with a diameter of 2 m 10 , attached to a 30 m diameter balloon $\left(14130 \mathrm{~m}^{3}\right.$). The scientific oals of this flight were the measurement of the cosmic radiation, of the ionization of the air and of the
electrostatic fied. This first exploration of the stratosphere was followed by the filight of Max Cosyns and Néree Van der Elst in 1934.The exploration of the stratosphere by manned balloon flights has been a briliant Belgian scientific adventure.

During World War 2 , the intensive use of radio-communications led to the systematic study of the ionosphere, undergoing the ultraviolet radiation of the Sun and the variations due to the 11 -year solar activity cycle. Radar was at the basis of the discovery of solar emissions in the ultr-short wavelength domain, and hence res the relations between solar and terrestrial thenomena which would lead to new scientific developments.

During this war, also the first balisitic missiles ($\mathrm{V}-2$ rocket) were produced by a German team led by Werne Von Braun in Peenemünde in order to satisfy the ambitions of Adolf Hitter. The $V-2$ rocket meant a decisive technical progress: gyroscope, turbo--uump... in order to make the engines work. It was a failure from a miltary point of view because its explosive charge made too few damage compared to the huge cost of its construction for the Nazi regime.

Thanks to the $\mathrm{V}-2$ rocket Von Braun and his team of about hundred persons, as well as the collection of German working documents falling in the hands of the Americans, intiated the U.S. space programme.
n 1946 , the Naval Research Laboratory carried out the first scientific space experiments with V-2 rockets. These experiments dealt with the first measurements of the ultraviolet radiation absorbed by the ozone in the

swis:

The first phase of the space era was hence the product of a militry policy, the rocket was the "daughter" of the war. The
satellites.
Around 1950, the aeronomy became, thanks to a few geophysicists, an official science, following the creation of of Geodesy and Geoohysics (cf. General Assemblies of Osto 1988 , Brussels 1951 and Rome 1954)

With the beginning of the space era, there was an extraordinary development of the study of all physical and chemical proprieties of atmospheres, hence aeronomy, ie. the study of phenomena in which dissociation and ionization of molecules and atoms play crucial roles.
In this way, the role of the solar ultraviolet radiation on atmospheric atoms and molecules became the subject of scientific studies to identify the nature of elementary processes determining the composition and the the atmoshere from the stratosphere to the exosphere (neutral atmosphere) and of the ionosphere (charged particles) to the very edge of interplanetary space (solar wind).

At that time, The Soviets and the Americans would develop ballistic missiles in the context of the Cold War The first US balistic icsisie with a range of more than 300 km was launched in August 1953 . Since 1949 , the
Soviets had reached a 900 km range! Soviets had reached a 900 km range!

It is in such a political and scientific context that the commission on ionosphere met in Brussels in September 1950. The commission decided the constitution of a special committee of the IGY with a first plenary meetin in July 1953. During this plenary meeting, the use of satellites for scientific purpose was proposed.

Sydney Chapman was elected president and Marcel Nicolet (Royal Meteorological Institute, RMI) became secretary general.
The bureau was composed of one Soviet, one American, one French, one British and one Belgian scientist Fourteen rapporteurs were designated from different discipines of geophysics, including Marcel Nicolet and Jacques Van Mieghem.

The special committee of the IGY officially recommended the launch of small scientific satellies during it 2nd meeting in Rome, in 1954.The year after, the US national committee gave a positive answer with a first objective: the study of particles and radiation outside the atmospher

Commemorative stamp for the stratospheric
balloon fights of Picard in 1931 and 1932.

TOWARDS RECOGNITION OF SPACE AERONOMY IN BELGIUM

Jules Suumotte (1919-1940)
Director of the Royal Meteorological Institute of Belsium.

3
Baron Marcel Nicolet (1912-1996)
Founder ofthe Beligan Institute for
Founder of the Belgian Institute for Space Aeronom,

In the 1930s, Jlues Jaumotte, director of the Royal Meteorological Institute (RMI) introduced the Norwegia method of synoptic meteorology and designed miniature meteorographs penetrating inside the stratosphere where they detected the varitions in temperature gradient increasing with altitude.

In 1937, Marcel Nicolet presented his thesis called "Discussions on Thermic Inversion Observed in the Stratosphere". A litte later he devoted himself to aeronomy, studying the photochemical processes initiated essential role in the interactions with the biosshere and the geosphere, which have to be taken into account in global changes studies due to human activities.
In May 1939, Marcel Nicolet published "Atomic Problem in the Upper Atmosphere", where he suggested the existence of oxygen, nitrogen, helium, hydrogen atoms at inaccessible heights with experimental techniques available at that time

In expectation of the development in Belgium of aeronomic research based on a space conception, the RMI Director, Jues Jaumotte, had already conceived a project for a section within his institute dedicated to radiation, with a very large vision of radiation studies in our country.
Dramatic events affected the RMI in the beginning of World War 2 , when I J. Jumotte passed away due to injuries incurred while he was embarking for England. In view of protecting the Belgian staff in charge of created different departments: climatology, aerology, terestrial magnetism and electricity, and radiation, in which all the RMI staff was then integrated.

This creation of different departments due to very exceptional circumstances gave the opportunity to develop. on a long.term basis, fundamental research in various directions and to contribute to scientific developmer which still explain the importance of Belgium in space studies related to the atmospheric environment.

The first conception of an "aeronomy" section in our country, at the RMI, dates back to September 1939 , space aeronomy was defined within the intermational frame.

The development of space aeronomy in Belgium appeared in 1953 during the preparation of the IGY (195758, with the encouragement of the Secretary-G
Meteorological Institue radiation department.

On the $30^{\text {h }}$ Jly 1959 , the National Centre for Space Research (NCSR) was created. Its founders belonged to all national universities and scientific institutions. The creation of COSPAR (International Committee of
Space Research) was the initiator for the NCSR. The founders proposed to the Accademies the creation of the NCSR to improve the reationship with COSPAR.
In its charter it is indicated that the NCSR's purpose is to promote studies related to space research, to develop the training of speciilized scientists, to exerciser research works in view of exploiting findings made on During the same period, under the auspice of the Ministry of Foreign Affairs, meetings of representatives of different ministries (Economy, Finance, Education, Scientific Policy etc.) prepared the political community to a European participation for the Intergovermental Conference of Geneva (28th November 1960). The aim of this conference was to create a preparatory commission to study a possible collaboration between European partners in the field of space research (meetings in Paris, Den Haag and Munich).
Meanwhile, in July 1960 , the National Council for Scientific Policy recommended our country to accept the Principle of the creation of the intergoverrmental preparatory commission. The conventions for the creation Etwo European organizations were signed in $1962^{\text {"ad referencoum" and submitted to to the parliaments: ELDO }}$
On the $28^{\text {n }}$ of May 1962 , the National Council for Scientific Policy transmitted to our government its ecommendations concerring the promotion of space research. In short, a national institute was described by a structure in four departments (mathematical theoretical. experimental and applied aeronomy) and 8 sections
related to respectively numerical analysis, fundamental dyyamics, atmosheric and interplanetary physics and related to respectively numerical analysiss fundamental dynamics, atmossheric and interplanetary physics and The Official Journal (Moniteur belgeleegigish Staatsblad) of November 25, 1964, published a Royal Byaw, announcing that "the Aeronomy section was to be detached from the Royal Meteorological Institute under the name "Belgish Instituut voor Ruinte-Aeronomiellnstitut d'Aeronomie Spatiale de Belgique"
The Royal Decree underines that the institute has as essential attributions the public service and research Isks in the domain of space aeronomy and that these missions reauire the knowledge of data acquired tasks in the domain of space aeronomy, and that these missions require the knowledge of data acquired
with the help of rockets and artificial satellites in the framework of the physics and chemistry of the upper atmosphere and of the extra-atmospheric space.
or this goal, the institute is therefiore in charge of

- Accuring and archiving information obtained via rockets and artificial satellites,
- Providing this information to the people and organisations interested in space problems, and therefore buil up documentation in this field;
- Proceeding with the investigation of applied experimental methods as well as with the analysis of the - Carcying out the research needed for tation;
- Accomplishing all above-mentioned efforts improvement and application of calculation methods:
framework
- Designing and setting, for this purposes, the necessary instrumentations;

Since then, BIRA-ASSB has carried out space observations with stratospheric balloons, carrying scientific loads of severa hundreds of kilos at an altitude of 40 km , on board the Space Shuttle, during Dirk Frimout's flight in 1992, and also with many past, present and future satellites dedicated to atmospheric environment.
n paralle, the modelling of the atmosphere and of the magnetosphere was largely developed, with the analysis of obervational data and the study of long.term trends like the one of ozone and climatic changes

CONCLUSION
Progress in science cannot be explained without historical background. The twentieth century and the conquest of space can be characterized by the synergy between science and technics, between knowledge interdependence during the last century.
Moreover, there has been convergence between military objectives and the technological needs for the conquest of space. But it is the scientific community that trigered off this endeavour. The IGY played major role. The discovery of the Van Allen radiation betts by Explorer I and 3 satelites is a perfect example.
At presentitit is still subject of research at BIRA-ASB in the framework of the European Space Agency (ESA At present, it stits sobiec of ereaerch hat sidA-ASb in the farmework of the European Space Agency (ESA) products. Scientific data and their analysis have become a matter of business.
Space has been taken over for political and strategic goals even though science was its first justification, the balloon and the aircrat had undergone the same fate.
Space conquest was and remains a prestigious enterprise doubled with economic stakes.
Today, space programmes must position themselves according to the 21 century challenges: global changes of the Earth, anthroposict pacs, isk ond be fill Sor correct answers can only be found through interrational and trans-discipilinary scientific

firistartificial satelitte, Sputnik 1 , launched on 40 ctober 1957

The 1-year solara activity cycle as seen in the x-Ray
wavelength range foom August 30,1991 to

The Sun is a typical star, emitting electromagnetic radiation and charged particles (the so-called "solar wind") which both impact the Earth's atmosphere. The solar electromagnetic radiation is the primary source of energ for the Earth's system. The Sun emits the whole spectrum of electromagnetic waves: visible light, of course
but also infrared (R) and ultraviolet (UV) radiation as well as radio waves, x-rays, and gamma rays The largest but also infrared (IR) and ultraviolet (UV) radiation as well as radio waves, x-rays, and gamma rays. The largest fraction of its energy is, however, situated in the visible wavelength range. The ultraviolet domain for wavelengts
 undamental importance for aeronomic processes taking place in the troposphere, the middle atmosphere and he thermosphere

The major contributions to the energy balance of the atmosphere come from heating through the absorption of solar ultraviolet (short-wave) radiation and from cooling to space through infrared (long-wave) radiation local imbalances between short-wave heating and long-wave cooling provide the driving forces for dynamical resses. Ner efr has be writily on has decace to accurcly

Because of the complexity of the atmospheric processes and the strong interplay and feedback between transport, chemical composition and radiative budget, atmospheric and climate studies should include observations of the ultraviolet solar radiation and its variability in close relation with the atmospheric constituents which control the penetration of solar radiation

Consequently, the knowledge of solar ultraviolet irraciance values as well as their temporal variations Cheamental in studying the chemical, dynamical and radiative processes in the middle atmosphere. In adaritria environment in comparison with anthropogenic perturbations

The interaction between the Earth's environment and the solar wind will be described in detail later on in this chapter.

HE SUN

Paul C. Simon

gaxies.
The Sun is a variable star with a "surface" temperature in the range of 5000 to 6000 Kelvin (K). Even though he Sun has no real surface, the outermost layer visible to the naked eye, the photosphere. is considered to e the Sur's "surface" The solar uratius (R), determined by the edge of the photosphere, is almost 700000 km . which is about 110 times the radius of Earth, while its mass is about 333000 times larger than Earth $\left(2 \times 10^{30} \mathrm{~kg}\right)$.

The Sun is divided into four domans: the interior with a temperature of about 15 milion K, the photosphere with a temperature of amost 6000 k , the iner corona, and the outer corona. The corona, the extended outer mosphere of the Sun, has a very high and variable temperature of, on average, around 2 million K. Figure 2 describes the structure of the Sun from the core to the corona

Ocated at a distance of, on average, approximately $1.5 \times 10^{\circ} \mathrm{km}$ (defined as one astronomical unit.A.U.) from he Sun, the Earth is located in the so-called heliosphere, a region dominated by the solar wind. While the botal irradiation emitted by the Sun, the so-called solar "constant", is 1368 Watt/m", the flux intercepted by the Earth averaged over one day is one fourth of this, ie. $342 \mathrm{~W} / \mathrm{m}$.

The visible, nearultraviolet and inffared solar radiation originates from the photosphere. At shorter wavelengths, the emissions originate from the chromosphere and, at very short wavelengths from the upper chromosphere and the corona. This latter solar region is also responsible for the emissions at very long wavelengths e.egr radio ves). Whilst the photosphere dominated by emission lines.

The heliosphere is defined as the region of space surrounding the Fuctuations in the solar radiation are mainly confined to the ultraviolet spectral range and shorter wavelength Syn, in which the solar wind, the solar magnetic field, and all of the regions where a high variability can exist, such as the radio wavelength range.

The Solar Spectrum
The range of the solar electromagnetic radiation extends from wavelengths shorter than I nanometre (I nm $=10^{-9}$ metre) to wavelengths of several kilometres. Nearly half of the total energy emitted by the Sun falls within the narrow wavelength interval which corresponds to visible light (400 to 700 nm); the other haf lies

The solar spectrum has the general characteristic of a continuum spectrum, superposed with complex absorption features in the near ultraviolet and visible range (Fraumhofer structure), and emisision features Fraunhofer (1787 -1 1826) discerned darkl lines in the solar spectrum that would later be attributed to chemical constituents of the Sun.

ULTRAVIOLET SOLAR IRRADIANCE AND ATMOSPHERIC PROCESSES

 Paul C. Simon

At the top of the atmosphere, the solar spectrum nearly looks like the emission spectrum of a black body
at about 6000 k , the characterisic temperature of the Sun's photosphere. The $200-400 \mathrm{~nm}$ waveleng interval has been extensively discussed by Dietrich Labs and coworkers in 1987 when they reported the data obtained from the Spacelab I mission in 1983. Most of the UV radiation penetration in the atmosphere is controlled by molecular nitrogen and oxygen, ozone and, to a lesser extent at lower altitude, molecula scattering (Rayleigh scattering).

The absorption of the solar ultravilet radiation heats the atmosphere, influencing its dynamics as well as its The absorption of the solar ultraviolet radiation heats the atmosphere, influencing its dynamics as well as its
chemical structure. Precise knowledge of the ultraviolet solar irradiances is therefore needed to understand the chemical and physical processes taking place at different atmospheric altitudes.

The absorption of solar ultraviolet radiation also dissociates atmospheric molecules producing atoms or different melecules. Some constituents loose electrons and become charged, thus forming the ionosphere
which is responsibi for radio wave propagation.
lons and electrons result mainly from the photoionization of molecular nitrogen and oxygen, and of atomic oxygen by solar radiation shorter than about 100 mm , because these constituents strongly absorb in that wavelength range (see next section).The very intense chromospheric solar emission line of hydrogen at 121.6 nm (Lyman alpha) has to be taken into account for photoionization processes down to about $70-80 \mathrm{~km}$. This line intitates also photodissociation, for instance, of water vapour in the mesosphere, controlling the ozone budget in this altitude range through the production of hydrox// radicals
Molecular oxygen is mainly photodissociated in the range of 135 to 175 nm in the lower thermosphere determining consequently the heating rate in that region and the production of atomic oxygen. Much of the atomic oxygen is transported down to the mesopause and its density must be correctly known as an essential input to middle atmosphere studies.

The $175-200 \mathrm{~nm}$ wavelength range corresponds to the Schumann-Runge absorption bands of molecular oxygen and is directly related to its photodissociation in the mesosphere and the upper stratosphere The $200-242 \mathrm{~nm}$ range corresponds to the Herberg absorption continuum of molecular oxygen. Its Chapman mechanism.

The primary ozone absorption takes in the 200-310 wavelength range in the strong Hartley band and is bands) and extends until the visible and near infrared ranges.
The absorption processes are of utmost inportance for ifie on Earth since they completely shield the biosphere rom highly energetic UV-C (wavelengths less than 280 nm) and from most of the UV-B (wavelengths between
280 and 315 nm).The cut-off wavelength is determined by the total amount of ozone in the stratosphere.

Most of the solar radiation that reaches the surface is converted into heat. About 50% of the incident solar irradiance is either backscattered by atmospheric molecules, aerosol and clouds, or absorted by trace gases such as water vapour, ozone and carbon dioxide.
In the sixies, solar UV irradiances were bady kno
In the sixties, solar UV irradiances were badly known and several balloon, rocket and, since the eighties, orbital neasurements on board Spacelab were performed by BRA-ASB. They are currently carried out with the noasurements on board Spacelab were performed by BRAR-AASB.They are curren 1 .

Selected Reference

A comparison of two images illustrates how the level of solar activity
has isen trom near minimum to near maximum in the Sun's 11-vears

The amount of radiation emitted by the Sun varies on many time scales. They may be as short as seconds secularTWo time scales are generally considered in in reation with aeronomic studies: the 11 --year activity yccle and the 27 -day varaition cycle. For both cycles, most of the variability ocurs in the ultraviolet part of the solar electromagnetic spectrum, which directly affects the atmosshere.
Because of the difficulty in quantifing the solar irradiance variation related to the solar activity cycle in the eighties, the inpact on the atmosphere of the 27 -day variation was analysed in detail. Indeed, observation instrumentation in orbit.These studies were very useful for the validation of photochemical processes.

The 27-Day Variation
As areas of enhanced magnetic activity appear and disappear on the solar disk, they look like "search lights" beams by the slow 27 -day rotation period of the Sun. The observed cycle thus arises from the rotation of the Sun and the non-uniform distribution of ativivity on the solar disc.
The best description of the 27 -day Variations during the decining phase of solar cycle 21 in the eighties have been provided by the Solar Mesosphere Explorer (SME) from 115 to 210 nm and by the Solar Backscatter extensively analysed, using the Fast Fouriers from 210 to 300 nm . Both satellite observations have been reated to the 27-, sing the Fast Fourier Transform technique (FFT) to isolate the solar flux modulution alated to the 27 -day solar rotation. The agreement between the amplitude of 27 -day variations during the overlapping period of time is very good.

Solar Cycle Variations

on the surface of the Sun, which occurs at the chythm of ten to twelve eears, with an anerage of eleven years Sunspots mark the growth and decrease of solar activity, At the same time, the solar magnetic field reverses. The amplitude of UV solar variation associated with the 11 -year activity cycle was uncertain for a long time Indeed, the SBUV spectrometer suffered from severe aging problems, mainly in the reflectivity of the diffuser plate used for solar irradiance measurements, making difificut quantitative analyses of the 11 -year solar cyd
 Irradiance Monitor (SUSIM) were launched on board the Upper Atmospheric Research Satellite (UARS) in 991.The Solar Radiation and Climate Experiment (SORCE), follow-up ofSOLSTICE, was launched on January 25,2003 . BRA-ASB is involved in the Solar Spectrum (SOLSPEC) experiment on board the ISS in operation sine 2008 (see chapter 8). Its observation time has been extended until 2017.

Itawing ofsusspot group obsened on 17 Ine 1875.

The Maunder Minimum, also known as the " "rolonged sunspot minimum also known as the Litte) cee Age is the name used for the period starting
 in about 1644 and continuing to about 17115 when sunspots became

SOLAR WIND
Viviane Pierrard and Joseph Lemaire

Artisicic view of the solar wind and its
the space environment of the Earth.

The solar wind is a stream of charged particles (ions and electrons) that are continuously escaping from from the Sun was first suggested by British astronomer Richard Carrington who made the first observation of a very high solar flare in 1859 and suspected a connection with the geomagnetic storm observed on the following day at the Earth. In 1950, the German scientist Ludwig Biermann postulated the solar wind outfiow by observing the tails of comets pointing away from the Sun. First direct measurements in situ could This opened an important field of research, since it is essential to know solar wind charactereritics for safe interplanetary space travel and for determining the influence of these particles on the space environment of the Earth.
Kinetic Models
Pioneer solar wind kinetic models were developed since 1969 at BIRA-ASB by Joseph Lemaire and Marc Scherer. They developed exospheric models appropriate to describe the collisionless solar wind. The Lemarie and Scherers kinetic modeds complement the famous hydrodynamic description developed in 1958 by Parker who pionered the first explanation for the acceleration of coronal protons to supersonic velocities Nevertheless, the hydrodynamic analogy is viewed as inadequate beyond $3-5$ Rs where the Coulomb mean-free-paths of the electrons and ions become larger than the local density scale height. The improved kinetic descripitions of the coronal expansion demonstrated that the physical process involved in the solar wind acceleration is basically determined by the electric potential distribution that drags the ions out of the corona conferring them supersonic velocities at the radial distance of the Earth (। AU). The differences and complementarties of hydrod the three-dimensional case in the framework of the interuniversity project CHARM.

Suprathermal Electrons
The velocity distribution functions (VDF) of electrons observed in the solar wind are characterized by a core and a halo population of sightly more energetic particles. A positive correlation between the solar wind bul speed at $I A U$ and the escape flux of energetic electron (inferred from Ulysses and WWIND measurements)
clearly supports the theoretical finding that the presence of suprathermal electrons influences the mechanism clearly supports the theoretical finding that the presence of suprathermal electrons influences the mechanism
solar wind velocity, is enhanced when the concentration of suprathermal electrons is increased in the solar ona. The enhancement of the escape flux of suprathermal electrons can account for the fast solar wind regime originating from coronal holes. The fast wind can be modelled by assuming for instance a Kappa velocity . he presence of VDFs with power law energy spectra in many other space plasmas suggests that the creatio how the coronal temperature profiles and the heat flux are influenced by the addition of a population of suprathermal electrons at the bottom of the solar corona

olar Corona

collaboration with Lamy, Pierrard showed that the heavy minor ions se perid heated in the coro by velocity fitration, but that they are less accelerated in the solar wind.
Recently Lemaire expan dela method introduced by Alfien to determine the coronal electron temperature sty profiles that are derived from photometric measurements of corona

fects of Coulomb Collisions and Wave-particle Interaction

Tore sophisicicated solar wind models have been developed step by step at BIRA-ASB in a privileged Collaboration with the team of Nicole Meyer-Vernet and Milan Maksimovic of the Observatoire de Paris the FokkerPlanck equation. These kinetic models of fourth generation confirmed that the collisions change the temperature anisotropy of the solar windVDF but not the averaged values of their lower order moments More recently, wave turbulence has been added in the FokkerPlanck equation of the coronal electrons. It has been found that whister turbulence influences the diffsion of the pitch angles and kinetic energies of the sola ind electrons. This additional physical mechanism should play a role in the formation of the supratherma wils of the electrons, at least in certain parts of solar wind where a powerful whister wave spectrum might be
lysse
the 1990s, the Ulysses spacecraft explored the interplanetary medium above the polar regions of the Sun during minimum solar activity conditions. This emphasized the significant differences between the solar wind at ligh heliographic latitudes and the properties of the solar wind plasma in the region of equatorial streamers Michel Roth and Johan De Keyser brought an important contribution to the space community by relating t different radial distances.

The occurrence frequencies of different types of directional discontinutites (tangential and rotationa discontinuities, magnetic holes) in the solar wind were also studied at BRAA-ASB using magnetic fied measurements from the EXPLORER 43 interplanetary probe. When Lemaire visited NASA in 1975 as Senior Research Associate of the US National Academy of Sciences, he extended the kinetic theory of diamagnetic boundary layers. This new kinetic model of tangential discontinutites was extended in Roth's PhD thesis where it was applied to the magnetopause.

Solar Energetic Particles (SEP)
Knowledge of the Solar Energetic Particle (SEP) environment constitutes a priority requirement for astrophyics missions and human exploration. SEP events are studied at BIRA-ASB by Norma Crosby and Mark Dierclassens, They are detected in interplanetary medium and consist of e ecctrons, protons, and heavie ions with energies from dozen of keVs to GeV. SEP events result from the acceleration of particles either by solar flares, by interplanetary shocks driven by Coronal Mass Ejections (CMEs) or by shocks associated wit corotating interaction regions.

By studying solar wind observations and developing kinetic models, the solar wind team at BRIA-ASB contributed to a better understanding of the physical mechanisms of particle acceleration, the eruption site conditions and properties of the space environment. The heating of the solar corona to peak temperatures of more than a milion Kelvin is a field of interest that continues to be investigated at BIRA-ASB. Three
 Universties.

Coronal mass fection. (credit NASA)

Peierard. V, and M. Lazar (2010), Kaz

THE MAGNETOSPHERE FROM FIRST DISCOVERIES TO CURRENT RESEARCH

The magnetised solar wind and the gas in the magnetosphere are almost completely ionized: they consist essentially of charged particles. Charged particles are much more mobile along magnetic field lines than across them, so both media do not readily mix. The magnetosphere therefore forms an obstacle to the solar wind flow. Moreover, this flow is supersonic (and even super-Alferici) and thus resembles the flow around a Supersonic je.TTh magnetic field plays a similar role in structuring the magnetospheric gas, as different regions e formed that do not easily mingle.

The solar wind transtions from supersonic to subsonic speeds at the bow shock. The shocked and heated solar wind there feels the presence of the downstream obstacle and it deviates and flows around the magnetosphere, forming the magnetosheath. The nearly impermeable interface between the interplanetary
magnetic field and plasma of solar origin on the one hand, and the geomagnetic field lines and plasma of agnetit field and plasma of solar origin on the one hand, and the geomagnetic field ines and Plasma of
onospheric origin on the other hand, is called the magnetopause. The US Explorer 12 mission in 1961 for the Irst time reveeled an abrupt magnetic field change as the spacecraft leff the geomagnetic field and entered the solar wind in the magnetosheath, crossing the magnetopause and leaving the magnetosphere for the
frist time. The magnetopause carries an electric current associated with the magnetic field change across the iterface.The solar wind pressure compresses the magnetosphere at the day side. The subsolar magnetopause standoff distance is $10 R_{E}$ (Earth raii) on average. On the night side, however, the magnetosphere is stretched out into a long magnetotail that is more than $200 R_{E}$ long. This tail consists of two lobes, which are nearly empty, the northern one with a magnetic field pointing towards Earth, the southern one with a field pointing eway from Earth. Both are separated by a current sheet that matches the field reversal; this current sheet is embedded in a denser plasma sheet.

The plasma inside the magnetosphere comes from two sources. First, the magnetopause is not exactly impermeable.Various processes do allow solar wind plasma to cross the magnetopause. This plasma forms a boundary layer just inward of the magnetopause, called the low-atitude boundary layer on the day side, while Called the mantie at high latitudes on the night side. The field lines in this boundary layer all extend down int the cusps, which play an important role in plasma entry, The second source of plasma is the ionosphere he ionized upper atmosshere

Sketch of the magnetosphere. See eext for description of its most
important regions. (adapted fom Kivelson and Russell, 1955)

Magnetospheric research at the Institute intially dealt with the question: how can ionospheric plasma move upward to form the magnetosphere? This led to the study of the polar wind. ionospheric material (mostly H
 a bit more complicated at lower latitudes, where the geomagnetic field lines are closed so that the plasma trapped. As the degree of ionisation varies with dayilght conditions due to the strong photo-ionisation effect the night time. The high-altitude reservoir that is formed in this way is the plasmasphere with its cold dense plasma content.This region has been an important field of research for the institute ever since and is discussed in detail in next section.

While the magnetosphere is bounded by the atmosphere from below, its interaction with the solar wind determines the nature of its outer boundary.The BIRA-AASB magnetospheric physics team has been addressin this topic extensively, both from the theoretical and the observational side. First came theoretical work based and solar wind plasma. Early observations indicated that this poundary is very dynamic, and that a certain amount of solar wind plasma actually is able to traverse that boundary. This led to the development of the "impusisive penetration" model for solar wind plasma entry, a topic that is still under scrutiny. Other studies looked at the possible enhanced diffuision of plasma across the magnetopause due to the role of plasma waves and their amplifcation near the magnetopause. As detailed observations of this boundary became available, especially with the advent of ESA's 4 -spacecraft Cluster mission, the confrontation of the theor with the observation became a more important theme. An example of this was the introduction of empirica to solar wind pressure variations. and to infer true spatial profiles of the plasma and field parameters acros the magnetospheric boundary. Some of the magnetosphencic plasma eventually returns to Earth. A prime example are the plasma particle
that are responsibil for aurora (northern and southern polar iohts). Theses phenomena have their sources
and a generator s site in the magnetosphere. Such sources act as a voltage source of the associated auroral electric
circuit. ARA-ASB
is at present still very much active in studying this electric circuit and possible generator sites This includes observations of those generators at the low latitude boundary lyyer in the plasma sheet and plasma sheet boundary layer, above the polar caps, and observations of the down going particles, but also of the ionospheric effects and the characterisitics of the enhanced ionospheric outfiow they produce (see next
section section).

While the solar wind particles and the plasma of ionospheric origin tend to be rather cold, a fraction of these particles can be energised due to various acceleration processes, often in relation to geomagnetic disturbances known as magnetospheric substorms and storms. This can be electrostatic acceleration as in aurora, diabatic cceleration as it occurs during inflow of plasma from the magnetospheric tail during a substorm, or acceleration by induced electric fields during storms and strong compressions of the magnetospheres. In addition, there energetic particice events, or the entry of cosmic rays. Al these processes contribute to the formation of the radiaion belts, energetic particle reservoirs that encircle the Earth, that were discovered by Van Allen at the dawn of the Space Age, and that are still of enormous technological interest because of their harmful effects on man and machine in near-Earth space.
Through the study of mass input and loss at the ionospheric boundary, and of mass transfer across the magnetospheric boundary, we are begining to come to grips with the overall mass circulation in the
magnetosshere. This is sfundamental for our understanding of the Earth's magnetosphere over a longer time magnetosshere. This is it undamental for our understanding of the Earth's magnetosphere over a longer time
scale. It also helps us to understand the differences between the magnetospheres of the Earth, Mercury Venus and Mars, of the giant planets, and of minor solar system bodies such as comets. These studies are presently carried out in the context of the Interuniversitary Attraction Pole "Planets: Tracing the Transers, Origin, Preservation, Evolution of their Reservoirs" and the ESA Rosetta project. Such comparative studies itegrate magnetospheric studies in the broader picture of planetary evolution

 and Venusian masnetopouse : ketic modeding and experine
hysisis, Cambridge University Press Cambirdge, U.K.

Erosion of the plasmasphere during a aeomagnetic storm due to the
interchange instability mechanaism developeed at B BRRA-ASASB. Acording
 sector due to e ehanced
(from Lemaire, 1974)

The plasmasphere is a characterstic region of the magnetosphere filled with dense ionossheric plasma. It
outer surface, the plasmapause, was diccovered in 1963 by Donald Carpenter from ground-based radio measurements of whistler waves. 1 tencircles Earth and extends from the topside ionosphere up to $3 R_{Z}$ (Earth radii) or more in the equatorial plane. The shape and extent of the plasmasphere depends strongly (i)
on the evel of geomagnetic activity which is quantified by the planetary Kp-index, fii) on magnetic local time on the leve of geomagnetic activity, which is quantified by the planetary Kp-index, (i) on magnetic local time
(MLT) and (iii) on universal time (UT). The plasmasshere is filled with thermal electrons protons and other charged particles of ionospheric origin whose energies are less than $1-2$ eV.They spiral along the geomagnetic field lines, and revolve around the Earth with an angular velocity almost equal to that of the Earth since these charged particles are trapped within the gravitational and the geomagnetic fields.
Inside the plasmasphere the electron and ion densities decrease smoothly along geomagnetic field lines and with radial distance up to the plasmapause, where a sharper decrease is generally observed in the radial density profile. Beyond the plasmapause, the plasma densty drops from about $300 \mathrm{~cm}^{3}$ to less than $10 \mathrm{~cm}^{-3}$ over radial distances sometimes as short as $0.1 R_{E}$. his sharp densty gradient has been consisteny conducted in the US and France. Detailed analysis of whistler waves propagating along geomagnetic fied lines from one hemisphere to the other allowed to determine how the plasmapause postion changes as a function of MLT and UT during geomagnetic activity variations.The main results of whistler wave campaigns have been summarized in the highly cited book of Lemaire and Gringauz in 1998.
At BIRA-AASB, Joseph Lemaire became interested in studying the plasmasphere from whistle and satellite At BRA-ASB, Joseph Lemaire became interested in stucying the plasmasphere from whister and satelite
observations in 1974 . This led him to propose a theory for the formation of the plasmapause. The physica mechanism proposed for peeling off the plasmasphere is based on plasma interchange motion becomin
convectively unstable from time to time. Indeed, during magnetospheric substorm onsets the plasma in the outermost layers of the post-midnight plasmasphere is accelerated eastward due to sudden enhancements of the convection velocity. The stronger the eastward acceleration, the steeper the density gradient will be in the midnight-to-dawn plasmapause boundary layer. This is recisely wat had been found in 1970 from OGO-5 in situ observations. Both satellite and ground-based whister observations definitely support this theory as documented in numerous publications. For instance, in 1979 Kowakowski and Lemaire identified
broad plasma ireeguartites in the post-midnight MLT sector iust outside the plasmapause in $H+$ density
pories observed by OGO-5. They interpreted these large scale structures as elements of plasma detached Tcording to Lemaires theory. Note that none of the magnetothydrodynamic scenarios for the evolution of he plasmasphere can explain such observations and achieve complete detachment of plasma irregularties
 sharp density gradient observed beyond the plasmapause.

Fabien Darrouzet studied the plasmasphere from the experimental point of view. He examined plasmaspheric density gradients from mutti-spaceccaft measurements made by the WHISPER experiment on board the Cluster spacecrat in order to determine the local orientation of the plasmapause surface and the structure of plasmaspheric plumes and density irreguarities inside the plasmasphere. Plasmaspheric plumes are protrusions of the plasmasshere that develop as a consequence of geomagnetic activity, and have been imaged with NASA's IMAGE spacecraft. TOgether with colleagues, he studied various aspects of the plasma reflling process i.e. how the ionossheric plasma fils the plasmassheric flux tubes. In doing so, he brought data from ESA's
Custer and NASA's IMAGE missions together An updated compilation of the discoveries made with both missions regarding the plasmasphere has been published in 2009 in a book edited by BIRA-ASB scientists, as a follow-up of a workshop organized in 2007 at the Institute

The changes in the shape of the plasmapause and its dependence on the Kp-index have extensively been observed with radio instruments recording whistler waves, and by satellites. All these observations indicate that the plasmapause is closer to Earth in the post-midnight region than at other magnetic local times
These observations also indicate that a bulge in the plasmapause surface is sometimes forming at dawn and These observations ass indicate that a buge in the plasmapause surface is sometimes forming at dawn and
subsequenty evolves into a plasmasheric plume as it corotates to the afternoon or dusk sectors and to he night side, as predicted by Lemaire. These features have clearly been verified by numerical simulation. ime-dependent simulations of plasmasphere erosion based on the interchange mechanism were developed using different electric and magnetic field models. They were confronted to actual plasmapause positions btained from satellite and whistler observations during substorms and geomagnetically quiet periods. These comparisons show that, most of the time, simulations based on the interchange instability qualitatively fit the instu observations better than alternative MHD scenarios. BRAA-ASB's dynamical simulations have also been successflly compared to EUVIIMAGE observations, in particular with respect to the peeling-off mechanism
due to the interchange instabilit.The formation of ripples or shoulders in the plasmapause in the post-dawn sector during substorms, and their subsequent propagation and stretching into plasma tails or plumes, had sector during substorms, and their subsequent propagation and stretching into plasma tails or plumes, had
arready
eeen simulated in 1985 by Lemaires frist dynamical model, ecacaes before they were efectively seen in
the EUVIMAGE observations. Multiple plasmapauses have often been reported from whistler measurements
as well as from in-stiu satellite observations; the formation of an intermediate region between an old vestigial

Equatorial projection of plasmasphere image foom the
NASA IMAGEEEVV instumentat $08: 311$ UTon on May 2002 .

has also been simulated by Lemaire and Pierrard.
More recently, three-dimensional dyyamical model of the plasmasphere has been developed at the Institute This dynamical 3 D model can be used to forecast and nowcast the plasma density in the plasmasshere and imported at NASA's Community Coordinated Modeling Center This plasmaspheric model has recently bee coupled to an ionospheric model byViviane Pierrard and Kris Borremans.

In 1992, Lemaire and Schunk suggested the existence of a plasmaspheric wind, a continuous expansion of the Plasmasphere, similar to the expansion of the solar corona. Their theoretical argument in favor of a slow but continuuus hydrodynamic expansion of the plasmasphere was inferred from the equatorial density profiles oservesheric

Much of the recent observational work on the plasmasphere has been done with the Cluster spacecraft (se section "Cluster", chapter 8). These spacecrat are ageing. To guarantee continued access to plasmaspheri observations, the Institute has set up a Very Low requency antenna in Humain, Belgium, for the observatio of whistlers. This antenna is part of the AWDANet (Automatic Whister Detector and Analyzer Network) network of whister stations.
The key contributions of BIRA-ASB in analying observations and builiding models of the plasmasphere and d the plasmapause, of shoulders orplumes of the plasmascheric wind and of the reflling process of flux tubes, represent important steps in advancing the scientific understanding of the plasmasphere. Of course. there are still a number of open issues in need of further research.

Selected References

Lemare, and K. Gingauz (1998), The Earthis Plasmasphere, Cambidge Univestity Pess, Cambridge, U.K.

websites
Plasmasphere Simulations:
htrp://lolasmasshereaerono
AWDA Network (Automatic Whistler Detector and Analyzer):
European Space Weather Porta
NASA Community Coordinated Modeling Center: htpp:/ccmc.gst.nasagov

 ight hand panel shows the peaks in the electron concentration that are
eferered to as the D 0 , and F Flyers of t t e ionosphere. The alphabeetic

Picture of auroral emission and of airglow as seen from the
international Space Station. (credit: ESA/ NASSA)

THE IONOSPHERE AND ITS COUPLING TO THE MAGNETOSPHERE

Johan De Keyser and Michel Roth

In 1901 Marconi estabished the first trans-Atantic radio link between Poldhu in Cormwall and Newfoundlanc The success of this transmision led Kenelly and Heaviside to propose the existence of an electrically radio waves involved in Marconis experiments could not have travelled directly across the Atantic but must have been reflected from this conducting layer. The upper atmosshere therefore had to be partially ionized The neutral part of the upper atmosshere is called the thermosshere, while the ionized part is referred io as the ionosphere.

Atthough electrfied layers within the upper atmosphere had already been suggested by Steward in 1878 and Schuster in 1889 , the physical study of the ionosphere, strongly stimulated by the development of broadcasting really started with racio wave experiments. In 1925 the ionosonde technology was invented by Breit and Tuve Two years later, Appleton came up with a complete theory of the propagation of electromagnetic waves in medium composed of charged and neutral particles, subject to the effect of collisions and in the presence of a magnetic field. The ionogram was first introduced into ionospheric research in 1933 as a way of producin as much information as possible about the ionosphere on a single graphic record taken from the ground
ionosondes. It is constructed by bouncing pulses of radio waves with frequencies from I to 30 MHz off the ionized regions of the atmosphere. From the frequency and time delay (or virtual height) of the reflected waves, the ionosphere was found to consist of two main layers, or peaks in the electron density with altitude They became known as the E and F layers. This nomenclature is still in use today. The D layer was discovered later at lower altitude.
It is important to notice that at the altitude where the highest electron density occurs $\left(10^{8} \mathrm{~cm}^{-3}\right.$ at 250 km$)$ about one in every 1,000 a ir particles is is inized. II general, the atmosphere is progressively more ionized with altitude, but it also becomes less dense. Above roughly 600 km , the ga is is esentially collisionless. This situation
however, is a bit didealized: ionosonde soundings reveal a b boad range of density profiles in which peridic and sporadic time variations can be identified.It is worthwhile to outine that during the International Geoophyica Year of 1957-58, an international cooperative effort, including Belgium, set up a worldwide network of ionosondes to record vertical sounding measurements during the $1957-59$ period of maximum solar activity At present, Belgium operates an ionosonde at the Geoohysical Center of the Royal Meteorological Institute

The physical and chemical processes responsible for excitation and ionization of the thermospheric particles do the production of a airglow and auroras. Both phenomena refer to the light emitted by excited atoms or molecules (neutral or ionized) as they return to their ground states. While airglow is due to emission from excited states formed by processes resulting (directly or indirectly, e.g. through chemical reactions) from solad electromagnetic radiation, auroral excitation results from collisions with magnetospheric energetic electrons hes in the aurora and airglow With Bates he conduded that the luminous layers of the atmosshere could hot be at such great altitudes as was claimed by observers.

There are several sources of ionization in the ionosphere. First, there is photo-ionization due to absorption of energetic solar ultraviolet and X-ray radiation. The vertical stratification of the Earth's atmosphere and is composition therefore leads to the existence of the D, E, and F F layers. Marcel Nicolet, founding father of he Belgian Institute for Space Aeronomy, pioneered studies of the impact of solar electromagnetic radiation development of aeronomy as a scientific discipiline and to the founding of the Belgian Institute of Aeronomy in November 1964. Nicolet soon realized that the structure of the ionosphere depends simultaneously on the vertical distribution of the neutral constituents (nitrogen and oxygen) and on the spectral distribution and he absorption of the solar radiation. In addition, he pointed out the importance of the chemical reactions occurring between the ions and the neutral particles and of the processes that result in the disappearance f electrons and ions. Indeed, while ionization is produced during the day recombination processes lead to a reduction of the electron density during the night. Recombination is very rapid for the D and E layers, since the neutral density is elevated at those altitudes, ss that they essentially disappear at night. A t low latitudes, the ionized particles in the F F layer during daytime move upwards along the (closed) geomagnetic fied lines and
fill the plasmasphere (see next section), only to descend again during the night time, thus helping to maintain the F-layer during the night. Much of the research done at BRA-ASB on the solar spectrum (see chapter 3) drectly pertains to this onization source. Note also that the same photo-ionization processes operate in the atmospheres of other planets and comets.
After World War II, Marcel Nicolet became an authority in atmospheric ion chemistry after his publication of Ater-World War II, Marcel Nicolet became an authority y in atmospheric ion chemistry after his publication of Enowedge of the constitution of the Sun and of the atmosshere and of the recent progress in a tomic and molecular herry,tit spossble to attempta soultion of the probiem of tue ionosshere in its senerat sspects. Thus, our work is he propagation of electromagnetic woves, results which con be used owning to continuuus ond d detailed puplications:" He provided the first explanation of the various origins of the atmospheric ionized layers in relation to
the ultraviolet solar radiation. In particular, he suggested that the Lyman-Q radiation of solar chromospheric hydrogen (at 121.6 nm) led to the ionization of nitric oxide (NO), a trace constituent of the atmosphere with
a rather low ionization potential. h his work brought him international tribute. In 1951 he received an invitation from Art Waynick, head of the Department of Electrical Engineering of the Pennsy/Vania State University, to be research professor at the lonossheric Research Laboratory.The origin of the ionospheric D region was explaned by Nicolet in 1960 in a classic paper where the hypothesis of the Lyman-a solar radiation as an
important ionizing source was reinforced. Up to 70 km . cosmmic rays and hard solar X-rays (< lnm) are the important ionizing source was reinforced. Up to 70 km , cosmic rays and harc solar X-rays $(<\mathrm{IIm}$) are the
most ionizing agents acting on molecular oxygen and nitrogen (the maior neutral constituents). In the $70-85$ km region and during quiet time solar conditions, the Lyman-a solar radiation ionizes nitric oxide. Lyman-a radiation penetrates in this region because it cannot ionize any gases found at higher attudues nor be strongly absorred by them. The ionization between 85 and 100 km altitude (base of the E region) is different.t| is the result of solar X-rays ($31-100 \mathrm{~nm}$) inizing molecular oxygen and nitrogen, of the Lyman-a of solar hydrogen (at 102.6 nm) ionizing moleculur oxygen, and of the Lyman continuum ionizing atomic and molecular oxygen. accues Wisemberg with studies on negative ions and on charged particle fluctuations. The emphasis. however progressively shifted more towards the chemistry in the lower atmosphere.

A second source of ionization is bombardment of the atmosphere with particles from the magnetosphere or from farther away. The best known example of this occurs in the auroral ionosphere, where accelerated electrons and/or ions originating in the magnetosphere are accelerated downwards and collide with the neutral thermosphere particles so as to produce a lot of spatially localized ionization. Depending on the energy spectra, auroral preciptating eectrons deposit their energy at different alttudes where the resuting colours of aurora, but also identifies the source and altitude of the emitted light.Atomic oxysen (O) produces the typical greenish colour of many aurora, whose spectral signature is a line a 557.7 nm . This line is the most intense at an altitude of 120 km . Above 250 km , atomic oxygen produces another intense line at 630 nm typical of the reddish aurora at high altitudes. Below 90 km , molecular n itrogen $\left(N_{2}\right)$ is responsible of the blue lines at 391.4 and 427.8 nm . Many other emissions also occur outside the visible wavelengths. The excited states of the oxygen atom in an aurora are meta-stable states that have lifetimes in the range of milliseconc to seconds (compared to about I nanosecond for the lifetime of ordinary excited states). Corresponding frequent.Thyy are called "forbidden"" transitions secause in ordinary conditions (ike in the abboratory), the excited atoms would not have emitted light as they would have lost their energy in the form of heat by collisions with other atoms and molecules. It should be noted that, while the accelerated auroral electron and/or ions produce a lot of ionization, the associated heating may promote ionospheric outfiows. Addition
particle bombardment occurrs in the cusps, where solar wind particles may reach down into the ionosphere Aove the polar cap, there is the polar rain: fast solar wind electrons that follow the half-open magnetic field hes through the lobes and ultimately reach the upper atmosphere.At the same time the polar wind removes ions and electrons from the ionosphere. Occasionally solar energetic particles produced intermittently as a Whbardment of the atmosshere because of their high energiges these particices contribute in corticuic to onization at lower altitudes.

A third type of ionization source is the high-speed entry of meteoroids into the atmosphere. The ionization tails of meteors are examined at BIRA-ASB with the BRAMS radio meteor network (see section "BRAMS" chapter 10). This ionization source is very intermittent and it changes in the course of the day and with the season |l is also spatially anisotrop

Te auroral current circuit: an electicic potential difference in the magnetosphere acts as as source that
 al Pedersen current I_{p} through the ionosphere, and fows as an upward Birkeland current back to the source. (from De Keyser and Echim, 2010)

Mach of BrA-ASBs research regarding the ionosphere focuses on the electrodynamic couping between the magnetosphere and the ionossphere.t The underlying reason is that one can only understand the magnetospher
if one accounts for the role of the ionosphere. There are basically two aspects to consider lonospheric outflows are a source of plasma for the magnetosphere (in particular of O^{+}, which is much heavier than 1 and has an effect on some dynamic processes) and affect its compostion. And, also, the electric conductivity of the ionosphere plays a crucial role in the aurora electric circuit. This electric conductivty is directly related
to the number of free charge carriers in the ionosphere, that is, the degree of ionization. Several aspects of to the number of free charge carriers in the ionosphere, that is, the degree of ionization. Several aspects of Maggiolo in recent years, both from the theoretical and the observational point of view. The auroral cricuit is typically driven by a magnetospheric structure that behaves as a current source or as an electric potential source, depending on the circumstances.Various types of such generator structures have been considered.The source drives a current that flows downward as a field-aligned current or Birkeland current to the ionosphere since magnetic field lines can be considered to be rather good electric conductors as charged particle typically yust follow them as in an electricaly conducting wire. The current then runs as a horizontal current
(known as the Pedersen current) through the ionosphere, and flows as an upward field-ligned current back (kown as the Pedersen current) through the ionosphere, and flows as an upward field-aligned current bac difference to discharge through the ionosphere. In doing so, energy is delivered from the magnetosphere to the auroral ionosphere. This description provides a clear explanation as to how magnetospheric electric potential differences across magnetic field lines are transformed into electric potential differences along magnetic field
lines This then may lead to electrostatic auroral acceleration of magnetosisheric particles down into the lines. This then may lead to electrostatic auroral acceleration of magnetossheric particles down into the ionosphere, and of ionospheric material up into the magnetosphere, ie., ionospheric outfiow. Interestingy black aurora, polar cap arcs, and subauroral ion drift that have been studied by BIRA--ASBB's Space Physics Division.

Observational studies of the magnetosphere-ionosphere coupling have mostly relied on Cluster and othe spacecraft (see section "Cluster", chapter 8). In recent years, however, we have started to work with ground. based instrumentation, Such as the European Incoherent SCATTer Radar (EICAT) in Scandinaviva and with the Auroral Large Imaging System (ALLS) run by the Institute For Space Physiss in Kiruna, Sweden. Such ground
based observations allow a very detailed analysis of the ionospheric signatures of aurora, for instance by providing a 3 -dimensional scan of the state of the ionosphere, a technique called "ionosposheric tomegraphy" Herve Lamy and Cyril Simon Wedund have shown that one can obtain some of the characterisitics of the precipitating electrons from such measurements. A spectrophotopolarimeter for measuring the polarization of certain auroral emission lines is being built and will soon be used in coordinated measurement campaigns in Scandinavia.
hiconclusion, BRRA-ASB has worked over the years on many aspects of the ionosphere, especially its f the Geophysical Observatory of the Royal Meteorologogical Institute in Dourbes that focuses on monitoring of the Geophysical Observatory of the Royal Meteorolos

The charged particle content of the ionosphere has many practical consequences. For instance, the presence of charged ions affects the chemistry in the upper atmosphere. The aurorar regions, for instance, ree known to feature an entanced NO_{x} abundance. The ionization also has a major efiect on radio wave propagationtion speed of radio signals, thus leading to a small phase shift in GNSS (Global Navigation Satellite System) signals and producing a positioning error, a topic that is heavily studied at the Royal Observatory.

elected Reference

Ceferer. Ind MMELim (2010

 carried by lections being accele eated dowwward into the
ionosphere (hisher fluxes in panelc). At Athe same time,

Proton flux profies for the duration of the SEPEM refereence
poton event that began on October 26, 2003.
(Generated by SEPEM)

Apart from the typical plasma partices that constitute the buik of the solar wind or the magnetospheric aphha particles. BRRA-AASB has specifically studied such high-energy particles because of their potential space weather effects: such particles constitute ionizing radiation and as such they form a hazard for both robotic and manned spacefiliht (see see section "Space weather", chapter 14). There are three major categories
energeic partices. solal energel palis, 1 Solar energetic particles occur in "events" of limited duration (hours to days). In general such events result frim
the acceleration of particles either by solar flares, by interplanetary shocks driven by coronal mass jections or by shocks associated with corotating interaction regions. They typically consist of electrons, protons, and heavier ions up to iron, with energies from dozens of keV Vs to a few Gevs. By studying these events, on can obtain information on the physical mechanisms of particle acceleration, as well as on the eruption site conditions, and on the properties of the space environment sampled by these particles during their trii to the observer. Our understanding of the mechanisms associated with the generation, acceleration, and
propagation of solar energetic particles is far from complete due to its inherent three-dimensional nature. the propagation of soliarenergetic partices is tar from complete doe to to ithererent turee-dimensiona n nature, the
lack of spatiall distributed in stu observations, and the complex nature of the underlying phys ical processes The accurate modeling of the solar energetic particle environment constitutes a priority requirement for interplanetary robotic missions and human space exploration as these particles pose a heatth risk to humans and a serious radiation hazard for spacecraft. Protons are the predominant ion species in large events and constitute the primary radiation hazard, causing both short-term single event effects and long.term tota radiation dose effects.

The institute has been involved in the ESA project "Solar Energetic Particle Environment Modelling" (SEPEM) The instutute has been involved nhe ESA for developing tools to study solar energetic particice events. BIRA-ASB was prime contractor for Tor developing tools to study solar energetic Particle events. BIRA-AAB was prime contractor for an
international consortium that worked on this project.The SEPEM application server.hosted and maintained at BIRA-ASB, was one of the main outcomes of the project.II offers a web interface to solar energetic particle data and a range of modeling tools and functionalities intended to support space mission design. In the framework of the project, new engineering models and tools to deal with solar energetic particles have been created by incorporating recent scientific result and a complete set of cross-calibrated data. A contiguous
reference proton data set was constructed using data ranging from 1973 to 2013 ,by means of data cleaning
ad processing tools avaliable on the server. Using this datasel, a reeierence event ist was constructed and events, which cover heliocentric distances ranging from 0.2 AU to 1.6 AUU.The SEPEM event statasisics moved beyond mission integrated fluence to peak flux and duration of high flux periods. Furthermore SEPEM inggineering scenarios; statistical methods can further be applied to these effects parameters.

Building on the SEPEM expertise, an EU FP7 project COMESEP (COronal Mass Fjections and Solar Energetic Particles: forecasting the space weather impact) was started for building tools to forecating geomagnetic Storms and solar energetic particle radiation storms (2011-2013). Norma Crosby was coordinator of this collaborative project. The tools that were developed have been implemented into an operational space weather alert system, hosted at the Institute. Geomagnetic and solar energetic particle radiation storm alerts are based on the COMESEP defnition of risk and disseminated to the space weather community To achieve his, the system reles on both models and datat, hte latter including near real-time data as wel as historical data key ingredients that lead to solar energetic particle events. COMESEP is a unique cross-collaboration effort and bridges the gap between the solar energetic particle communit, solar coronal mass jecction monitors ad the terrestrial effects community. BIRA-ASBB has focused on the quantification of solar energetic particle event occurrence probabilities and on the correations between such events and solar phenomena.
The second category of energetic particles are the galactic cosmic rays. These are the most energetic particles (energies up to 11^{21} eV) and originate from outside the Solar System. They form a rather permanent
background. During a mission to the Moon and Mars, for instance, spacecratt and crews will be exposed not only to occasional solar energetic particle events, but also to galactic cosmic rays, as well as to energetic secondary nucleons and heavier nuclear fragments generated by the interactions of these particles in the spacecraft materias. Once on the surface of Mars, the radiation risk to the astronauts can in fact increase because of the secondary radiation produced by the interactions of the galactic cosmic rays and the solar energetic particles in the atmosphere and soil.

In this context, BIRA-ASB contributed to the Alenia Spazio S.p.A. lead ESA Radiation Exposure and Mission Strategies for Interplanetary Manned Missions (REMSIM) project Strategies for I Iterplanetary Manned Missions REMSIM) Project that ended in 2004.REMSIM concerned cosmic
radiation in relation to human interplanetary missions. The study covered strategies and countermeasures to ensure the protection of astronauts from radiation during interplanetary missions, with specific reference to: radiation environment and its variabilty; radiation effects on the crew; transer trajectories and associated
fluences; vehicle and surface habitat concepts; passive and active shielding concepts; space weather monitoring

The ESA Aurora Programme. (credit: ESA)
and warning systems. BRA-ASB performed the revew of the precursors of solar and interplanelar as well as moitork in interplanetary space weather including remote sensing and in-situ databases, modes taking into account radiation dose thresholds. Variouss integrations of models and data syytems from future taking into account raciation dose thresholds. Various integrations of modeds and data ss
planned missions were considered and recommendations for warning systems were given.

More recently, BIRA-ASB contributed to the QinetiQ lead ESA Martian Radiation Environment Models (MarsREM) project. The objective was to develop physically accurate and easy-to-use models to allow scientists and engineers to predict the radiation environment for Mars orbits, within the Martian atmosshere MarsREM project, BIRAA.IASB , s wel as for the envirorments on the moons Phobos and Demos. D. Partic data and modeds of these envirosments, and for creating a datataase of radiation datata and an interface to that database. To define the Martian primary y particle environment "standard" energy spectra or models of galactii cosmic rays, solar energetic particles, and solar X-rays were derived by scientists at the Institute for use in collaboration with the Space Weather team of the SheM team members. This work was pefformed I)

The third category of energetic particles are those that have become trapped in the Earth's geomagnetic field thus creating the doughnut shaped radiation betts. Earth's inner proton radiation belt consists of energetic protons extending up to energies $>50 \mathrm{MeV}$ near $1.3 R_{E}$ (Earth radi) and is fairly stable in time. The electron adiation belt consists of electrons up to several MeV and is split into two regions: a fairly stable inner belt increase by up to five orders of magnitude on timescales of a few days, and in exceptional cases as short as a few minutes Electron flux variations (spatial extent and location of peak flux) are driven by changes in the solar wind which couple through the magnetosphere and drive changes in the source of electrons, the transport mechanisms, the acceleration and loss processes. Satellites situated in Earth's geostationary orbit are highly vulierable to these periods of enhanced electron flux
BIRA-ASB has worked on the modelling of the radiation belts for many years, in particular since the ESA. sponsored TRapped Radiation ENvironment Development (TREND) project that consolidated and added to earier efforts to evaluate radiation dose and fluences expected in a spacecraft on a given orbit (see section momentum with the EPT instrument on PROBA Vegetation that is currently collecting data on the energetic particles around Earth (see "ALTUS", chapter 8).

Apart from observations, the institute is also involved in modeling efforts regarding the radiation betts as . orecasting models for space weather phenomena from the Sun to the iner magnetosphere that are especially in charge of the "Coulling at the Earth" murt of the characteristics of space weather processes. BRA-ASS sin charge of the "Coupling at the Earth" part of the Sun-Eart scenario covering the iner magnetosphere, ef plasme electron radiation betts is studied using Cluster and other satellite obsernations with the objective to develop an empirical model able to reproduce the flux variations appearing during geomagnetic storms. The spectra of electrons and protons in the radiation betts were analysed in detail to compare with the future observations of the EPT instrument. In order to understand the dymamic behaviour of the radiation bets. thei reation with the plasmasphere and the plasmapause position has been examined with Cluster.

Selected References

Websites
The SEPEM Application Server: The EU FP7 COMESEP Projec The ESA MarsREM Project httod/reat space.ainetic.com/marssem/

The Earth's limb seen from the Ittermational Space Station in February 2010 with the silhouette
of shutle Endeavour. The orange layer is the troposphererethe whitish alaere and bue tayers are
the stratoshhere and the mesosphere. the stratosphere a
(reefit: NASAA)

mon Chabrillat and Guy Brasseur (MPI-M, NCAR)

What is the structure of our atmosphere? What are the causes of this structure? What is its chemica composition and why? How does the composition vary with time and why? These are the questions at the heart of theoretical aeronomy. As in other fields of physical science, this theory is expressed through models, t.e. lid (Cl) ent

The vertical structure of the atmosphere is most commonly described by the variation of temperature as a function of height, determining five primary atmospheric regions: the troposphere, the stratosphere, the mesosphere俍 he temperature decreases with increasing height this is the resion where most meteorological phenomen
 tratosphere heap mainl by the chsoption of the utraviolet sulight by czone Ballons and planes cannot reach higher regions leaving in situ exploration to sounding rockets at approximatell 50 km altituce these enter the mesores as the rocket gees up At approximately 90 km , the emerature starts increasing again our rockets enter the thermosphere where the air density is low enough to Ulow artificial satellites to circle the Earth Hence the thermosphere is often considered as the "edge of space": Fédérotion Aéronautique lien lin altitude of 100 km .

The pimany atmospheric regions of Earth from the

On their upward trip, human observers of course eeft for a long time the atmospheric region that is hospitable to fe, i.e. the lower half of the troposphere. They cannot breathe above this shallow layer, and require an artificially ressurized environment even before entering into the stratosphere. The upper stratosphere and mesosphere hermosphere, on the other hand, is still a region of the terrestrial atmosphere, because it is composed of atoms and molecules which are still gravitationally bound to the planet. Hence the mesosphere and thermosphere can be considered both as atmospheric regions and as the first outposts of the spatial environment.

Strictly speaking, the terrestrial atmosphere does not even end with the thermosphere. At heights between 500 and 1000 km , depending on solar activity, the density becomes so low that the atoms and molecules can trave hundreds of kilometers without colliding with one another. Even though some neutral particles escape into iterplanetary space, most are still gravitationally bound to the Earth, hence we may still consider that this regio s an atmospheric layer. This layer is the exosphere, where the temperature remains approximately constant with respect to altitude. Here the usual laws of thermodynamics do not apply anymore: the temperature must be considered through the kinetic theory of gases, which is based on the probability distribution of the energy of motion of gas particles. The boundary between the exosphere and truly interplanetary space is somewhere between 50000 km (i.e. close to the geostationary orbit) and 200000 km (i.e. halfway to the orbit of the Moon)

The vertical structure of the atmosphere can also be described by its chemical composition, determining three nain atmospheric regions: the homosphere and the heterosphere for the neutral constituents (i.e. atoms and molecules) and the ionosphere for the electrically charged ions. In the homosphere, which extends from the surface up to approximately 100 km , the composition in terms of major constituents is uniform: the mixing ratios of the most abundant gases are constant, comprising mainly molecular nitrogen ($\mathbb{N}_{2}, 78 \%$ per unit volume) and molecular oxygen $\left(\mathrm{O}_{2}, 21 \%\right)$ while the abundance of minor constituents, such as ozone, is much smaller and very variable. Above the homosphere lies the heterosphere, where the mixing ratios of the major constituents epend on their molecular mass: their abundance decreases with height for the heavier species ($\mathrm{Ar}, \mathrm{O}_{2}$) and increases for the lighter species ($\mathrm{H}, \mathrm{He}, \mathrm{O}$).

The ionosphere, finally, is a shell of electrons and electricaly charged atoms and molecules that surrounds the Earth. It overlaps the upper mesosphere, the thermosphere and the lower exosphere and owes its existence
primarily to solar radiation in the extreme ultraviolet range. This solar radiation is sufficiently energetic to strip Some atoms and molecules from their outermost electrons, and the air density is low enough that free electrons atmosphere contains a plasma and is ionized. It must also be noted that the number of free electrons is sufficient to affect radio propagation, which allowed the discovery and characterization of the ionosphere several decades before its exploration by sounding rockets.

Let us now explore in some more detail the current theories and models explaining the structure and composition of the neutral atmosphere, and the contribution of BIRA-IASB to this field. We will travel back down to the surface, discussing first the environment of satellites, i.e. the regions above 120 km (exosphere, heterosphere pper thermosphere). These were first explored with the advent of the Space Age, and the newly founde IRA-IASB contributed decisively to this research. We will then review the transition regions from 120 km down to 60 km (lower thermosphere to mesosphere, heterosphere to homosphere) which are very difficult to explore in situ and have been a focus of aeronomic research for the last 25 years. This exploration will continue into the stratosphere which drew much attention during the 1980s and 1990s due to the impact of human activities on the ozone layer, and will end with tropospheric chemistry which has become a very important field of research due to current concerns related to air quality and climate change.

Sydney Chapman and Edward Mine had shown as early as 1920 that above some layer of perfect mixing (now named the homosphere), molecular diffusion would separate the atmospheric constituents accordin
to their mass. But the transition from homosshere to heteroshere was artitraril set at 20 km altude. The correct location of the heterosphere was discovered just after the Second World War, thanks to soundings by the $\mathrm{V}-2$ rocket: decreased abundance of the noble gas argon was observed above 110 km and readily explained by molecular diffusion (Ar has a molar mass of 40 g /mole while air has an average molar mass of above 110 km altitude.

Until 1957 the only means to derive air density in the thermosphere was through rocket soundings. Whe the first artificial satellites were launched, they stayed a shorter time in orbbit than anticipated from the early evaluations of air density: these appeared seriously underestimated. Indeed a satellit's ofbit contracts under the action of air drag, which is directly determined by the density of air particles. In 1958 , Nicolet explaine that this high air density in the thermosphere was due to heat conduction (as first suggested by Sydne砳

Due to their low masses and local sources by photocissociation of solar light, atomic oxygen and hyydrogen were known to dominate the composition of the thermosphere and the exosphere. Echo 1 , a metalid
balloon satellite acting as a passive reflector of microwave signals, had a large $(30 \mathrm{~m})$ spherical shape whic alloon satellite acting as a passive reflector of microwave signals, had a large $(30 \mathrm{~m}$) spherica slape
allowed precise and recurring measurements of the molecular density in the exosphere. Nicolet (1961) showed that neither atomic oxygen nor atomic hydrogen could fully explain its orbital variationst they required an intermediate layer where helium is the dominant species. Later, Kockarts and Nicolet proceeded to delive the first theoretical computations of the vertical distribution of helium. This discovery of a "helium bett
was one of the great scientific successes which led to the foundation of BIRA-ASB. The research on this theme continued at BIRA-ASB, eg, with a kinetic model for the escape of helium and hydrogen from the atmospheres of Earth and Mars.
The air density derived from satelite drag provides measurements not only of molecular mass, but also of temperature. It was found that the temperature in the exosphere does not vary with altitude, keeping the values reached at the top of the thermosphere These thermopause temperatures range from approximatel/

Mass percent concentration (\%)

600 K to 2000 K depending primarily on the level of solar activity, and secondarily on the diurnal and seasonal ycles. These variations are due to the varying amounts of solar radiation absorbed in the solar X-ray and cycles. These variations are due to
extreme ultraviolet (XUV) range. The thermospheric temperatures, on the other hand, vary with altitude: this variation can be described through
the "Bates profie"which is derived from a simple equation of heat conduction.This approximation represents well the observed continuous decrease in temperature, from the thermopause down to some level chosen in
the lower thermoshere - sually 120 km . he lower thermosphere - usually 120 km .
The re-entry of a satellite is sometimes a source of anxiety as was the case, in 1979 , for Sklab I (77 tons). The need to quickly predict the impact of atmospheric drag on the orbit of satellites, and their time before re-entry, led to the development of semi-empirical models of the thermosphere. These models combine

Aeronomy (1973) - a reference book still used 40 years later
Starting in the 1900 sand until his retirement in 2002 trom
the lead of the elphysical Aeronomy' division of BRR A-ASB he lead of the "Physical Aeronomy" division of BRAA-ASB aeronomy in the upper atmosphere. Together with Peter Banks,
now dean a t the Univessity of Michigan, he wrote a atwo-volume

 will probably be inequaled for some years" (Res, 1974). Indeed thanks to its side scope and focus on theory this book
is still sed as as reference to advance arononomir ysearch. It
complete explanation of molecular and thermal difitision allows

basic physics (1.e. heat conduction and molecular diffusion) with tabuated or parameterized values of the past obsererationd densities at 120 km and at the thermopause. On the basis of these climatological datasets of of space, time of year and level of solar activity

Three main families of these empirical modeds have been developed during the last 50 years lacchia's. DTM and MSIS. Profiles shown in the previous fifyures are results by MSIS, which was extended down to the and MIS. Profiles shown in the errevious figures are results by MSIS , which was extended down to the
surface on the basis of climatological temperature dataseets, ti is apractical tool to quickly provide the basic quantities of the atmospheric environment over its whole vertical range. A more sophisticated altermative is the development of a comprenensive, first-principles, non-IInear representation of the thermosphere. These models, such as TI-GCM developed at the National Center for Atmospheric Research in the U.S integrate in time the three-dimensional momentum, energy and continuty equations for the main species of the thermosphere.

Selected References Bans P.M. and G. .ocatars (197)

Koctarats G (2002), Aeron
e-20-585-2002
(2032

Rees, M.H. (1974), Paneatary Atmospheres RReview of the book Aeeronomy by Banks. PM. and G. Kocotarts. Science, $186,1200$.

THE MESOSPHERE AND LOWER THERMOSPHERE: simon Chabrillat and Guy Brasseur (MPI-M, NCAR)

 The thermosphere and stratosphere have positive gradients of temperature due to the absorption of solarUV radiation: by molecular oxysen in the thermosphere, and by ozone in the stratosphere. The mesosphere is the intermediate layer (greec "meso" meaning "middle") Mhere the temperature decreases with height. This is due to the absence of significant heat sources and to radiative cooling by carbon dioxide: at these low densties, the greenhouse gas emits infrared radiation rather than absorbing it, thus cooling the mesosphere.
We have seen (section "Solar wind") that as early as 1945 , Marcel Nicolet correctly hypothesized that the existence of the ionospheric D region was due to the photo-ionization of NO into $\mathrm{NO}+$ by the solar L yman-a ine (121.6 nm). Bates and Nicolet (1950) made a second fundamental contribution to the knowlegge of the mesosphere: they suggested that reactions involving hydrogen compounds ($\mathrm{HO} \mathrm{O}_{x}$) would induce a significant catalytic mesospheric ozone loss. This first proposas of of catalytic cycle for the loss of ozone was actually based on a one-dimensional "numerical" model of mesospheric photochemistry at daytime equilibrium; tit was solved
through successive iterations, most probably sing an electromechanic computer and tabulated functions. Its through successive iterations, most probably using an electromechanic computer and tabulated functions. Its vapour is an important source of atomic hydrogen, and the Chapman mechanism is not sufficient to explain the abundance of ozone in the atmosphere.
Numerical models of the atmospheric composition evolved from this primitive one-dimensional layout ititated by M. Nicolet in 1950. During the 1960s, Gaston Kockarts developed one-dimensional models which did not assume equilibrium and ran on the electronic computers of the newly founded BIRA-ASB (among the first such computers in Belgium). During the 1970 and 19805 , Guy Brasseur developed a very succesfuil twodimensional model which integrated in time not only the chemical composition, but also the wind fillds and the temperature. During the 1990 s, the development of this model was transferred to the National Center for Atmospheric Research (NCAR) where G. Brasseur led its upward extension (from 85 km to 120 km altitude)

Forthe last 15 years, NCAR pioneered the development of three-dimensional models of fatmospheric chemistry extending over several atmospheric regions: MOZART, which included only chemistry and transport, was followed by WACCM (the Whole Atmosphere Chemistry-Climate Modell). WACCM is now the atmossheric component of CESM (the Community Earth System Model) which also includes a land-surface, an ocean and sea ice component. CESM is one of the leading models to study climate change at the global scale.

General view of the abundance of minor constituents in the stratosphere,
mesossphere and low thermosphere. (after Marcel Accerman)

At BIRA-ASB the modelling efforts for the middle atmosphere were renewed with the development of a 3D model to assimiate satelite measurements of stratospheric composition. Since the simplified photochemistry from SOCRATES and the improved Chemistry-Transport Model and associated Data Assimiation System was named $B A S C O E$. While very successful for data assimilation applications (see Chapter 14). BASCOE does not solve the atmospheric dynamics and must be driven by wind fields computed by meteorological centers While it is now abandoned in favor of BASCOE, SOCRATES allowed new studies of the coupling betwee dynamics, chemistry and radiation in the mesosphere. This is indeed a quite turbulent region whici is set motion by noniniear wave dynamics. At or close to the surface, the displacement of winds over orography o
frontal weather patterns generates vertical oscillations of the air masses which propagate upwards: these are named inertial-gravity waves. Much ike sea swell approaching the shore, the amplitude of these gravity waves increases quickly with height in order to conserve their kinetic energy in a continuously less dense medium Some waves dissipate in the stratosphere when they encounter unfavourable winds "crritial levels"; the
remaining ones break in the mesosshere where the density is to low to allow further roopagation - much remaining ones break in the mesosshere, where the densty is too low to alow further propagation - muc
like sea waves encountering the shore. And in the same manner as sand pebbles are mixed by breaking se waves, breaking gravity waves contribute to eddy diffusion, ie. the mixing of the atmosphere through the small-ccale turbulence.
These dynamical processes are difficult to observe because in situ measurements are accessible only throug occasional rocket soundings. They are yet very important to determine the location of the homopause, whic separates the homosphere (where diffusion is important enough to distribute homogeneously the majo
atmosheric constituents) from the heteroshere (where moleculuar difusion separates these constituents depending on their mass). Hence molecular diffusion cannot be neglected above the homopause. The turbopause is a related, but different concept: it is the altitude where the coefficients of molecular diffusion and vertical diffusion are equal. The value of the vertical, eddy diffusion coefficient depends primarily on the parameterization chosen to estimate the breaking of gravity waves, because this process cannot be computed exactly by chemical models of the atmosphere within their current framework. Hence, the altitude of the turbopause cannot be precisely estimated. Furthermore, this altitude is not univocally defined, because the molecular diffusion coefficient is different for each chemical species

This explains why the conventional atitude of 100 km , often presented as the approximate location of the turbopause, should be viewed only as a general indication. Many coupled models of the dynamics and the chemistry in the mesospherellower thermosphere (MLT) seem to neglect molecular diffusion, or to take it chemistry in the mesosphere lower thermosphere (MLT) seem to neglect molecular difusion, or to take
into account only above 90 or 100 km altitude. Using the SOCRATES bi-dimensional model of the middle
tmosphere, Chabriat et a. (2022) showed that molecular difusion has a direct impact on the vertical distribution of CO_{2}
urbopause altitude.
The breaking of gravity waves in the mesosphere causes not only eddy mixing but also the global circulation cell which transports air from the summer pole upwards into the upper mesosphere, meridionally to the Winter pole, and downward into the winter pole.. Hence the mesospheric polar night region experiences nhis process was neglected. Chabriliat et al (2002) showed that neglecting the molecular diffusion of CO_{2} bads to a polar night mesopause 12 K too cold and concluded that all models of the mesosphere should take molecular diffssion into account. Despite the excellent results obtained most recently by the 3D model WACCM against satellie measurements of CO and CO_{2}, it appears that even today some other atmospheric odels erroneously neglect molecular diffusion while attempting to explain the atmospheric composition into or close to the heterosphere.

Streamines of the residual wind field at sostitic (Une 25) as a function of
atitude and height, computed by the model Soccaftes. The arows show the latitude and height, computed by the model socrantes. The a rouncts show the
foow form the summerto the winter pole, and the fow is fasterwhere the lines
converge.

Selected References

THEORETICAL AND MODELLING STUDIES OFTHE STRATOSPHERE

Sébastien Viscardy and Quentin Errera

The stratosphere, ranging typically between 10 and 50 km in altitude, has remarkably drawn the attention of the scientific community since the beginning of the $20^{\text {th }}$ century especiall because it contains the ozone layer that becoming more and more systermatic thet raciation. Wadation to aboratory exeperime helpful to increase or understanding of the composition and processes occurring in this part of the atmosphere. However, the tremendous improvements carried out on computer technology gave rise, around 1970, to the use of a ne sicd redicting its eyolymuricical modelling, which has permitted simulating the behavior of the atmosperes substantially helped to improve the undesconditions. Over the last forty years, the ozone layer and its alteration (e.g. due to the emission of anthropogenic pollutants, the solar activity, etc.) have been a subject of intense study.
The first studies related to the stratospheric ozone layer date from the second half of the $19^{\text {n }}$ century. Atte observing in 1879 that solar radiation at wavelengths shorter than 290 nm did not reach the Earth's surface that the responsible gas was ozone. Thirty years atere. Fabry and Bu bison, fter measuring very weak ozone concentrations close to the Earth's surface, suggested that larger amounts of this chemical compound would be present in the upper atmosphere. Since then, the so-called stratospheric ozone layer has progressivel attracted the attention of scientists and was rapidly considered as a key constituent of the atmosphere.
In this context, in 1930, Chapman proposed the first photochemical mechanism for ozone formation and destruction by considering only oxygen compounds. This theory was a breakthrough but remained of cours ozone loss through reactions involving hydrogen compounds (HO).) In the e 960 s., Hampsonn transposed those reactions to the stratosphere but Crutzen demonstrated that they were poorly efficient to destroy ozone in this altitude region and showed, transposing the HO_{x} scheme to NO_{x}, that the role of nitric oxide in the ozone formation and destruction was much more substantial. It must be noted that Nicolet had alread started much earier to emphasize the role of nitrogen oxides (initially in the ionosshere). From 1965 to 1973, Nicolet determined the ratio between nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) and nitric oxide (NO) on which Crutzen argumentation was based. tackled the question of the origin of nitric oxide. its production by the oxidation or
restigious William Bowie Medal in 1984. In 1974, Stolarski and Cicerone asso transposed the HO_{x} scheme ClOx_{x} catal tic cycle and concluded that chlorine radicals (ClO) were the stratospheric compounds
contributing most to ozone destruction, while the same year; Molina and Rowland went further in claiming at the chlorofluorocarbons (CFCS), due to their photo-dissociation in the stratosphere, were an important source of those radicals.

From the early 1970 s on, BIRA-ASB produced a long series of stratospheric modeling studies, mainly nitiated by Brasseur:The models have progressively become more complex incorporating recent advances from laboratory experiments and observations. Moreover, computers improvement contributed to increase their dimensionality. Accordingy, the first models considered only the vertical axis, thus assuming a horizontal homogeneous distribution of chemical species involved ina chemical scheme elaborated by Nicolet.Athough simplistic, those models have been helpful to determine the production and loss rates of key species and solar activity).

Continuing studies on nitrogen oxides conducted at BIRA-ASB, Brasseur and Nicolet undertook in 973, the estimation of the veritial distribution of nitrogen oxides and nitric acid in the stratosphere and mesosphere. Their research showed that nitrogen oxides are very sensitive to the OH concentrations. As a corollary, an increase of water vapor concentrations causes an increase of the amount of nitric acid (HNO$)_{3}$).
Brassur (1978) extended this model to two dimensions, allowing an investigation of the effects due to the meridian transport.this clearly highlighted the importance of the role of hyydrogen and especially of nitrogen meridian transport.This clearly highighted the importance of the role of hydrogen and especilly of nitrogen ozone. Moreover, Brasseur showed that in regions with less sunight (i.e. where the molecular oxygen is less photolyzed), the meridian transport ensures the transfer of ozone from the equator to polar regions where is concentration is maximum during winter
In the 1980s, modelling studies were performed to study the impact of the variability of solar activity on the stratospheric temperature and minor atmospheric constituents. Two major solar cycles were mostly Che stratospheric temperature and minor atmospheric constituents. Two major solar cycles were mostly
 satellite observations revealed high correlations between ozone concentrations and short-term variations of the Sun. The response of nitric acid, while opposite to ozone's, was even stronger, and the two-dimensional odel results obtained at BIRA-ASB were in fair agreement with these observations.

During the 1980 s, Brasseur and De Rudder performed different quantitative studies highlighting the impact of anthropogenic pollutants on the stratospherict temperature and the ozone layer.They also tackled the question

Aeronomy in the Middle Atmosphere

 so interdisciplinary that a synthesis of the state o
Knowledge became critcal in the early 1980 s.t. knowledge ecame critical in the eary 1980 s. In this
context, Guy Brassur together with Susan Solom
(NCAR) provided such a comprehensive treatise which (NCAR) provided such a comprehensive treatise which
hey naturally entited Aeronomy in the Middre Atmosphere This textbook is notate for many reasons. Both physis
and chemistry of the stratosphere and mesosphere are and chemistry of the stratosphere and mesosphere are
conered in an xensive way The etex is coarly witen
and remarkably wellillusurrated. The use of informative covered in an extensive way. The text I s cleary writtee
and remarably wellilisurrate.the use of ifformative
schemes describing the utmospheric chemisty makes it. shemes describing the attospheric chemistry makes it
comprenension much easie to the readers. As aresuit
the textbook rapildy peecame a unique reference 0
 for anyon interested in the atmospheric cegions between
boout 10 and 110 km in latitude, , ooth os a reserart ond
teaching source.
himain thimite $=$
(3)

E
of the future evolution of stratospheric ozone, particularly when assuming a high chlorine perturbation due to the human production of chlorocarbons and other ozone-depleting substances (De Rudder and Brassel 1985).These studies atively contributed to the scientific advances leading to the celebrated Montreal Protocal ratified in 1987

Pobably one of the most important brealthroughs in the history of atmospheric sciences took place in 1985 when Farman et a. discovered the famous "zone hole" occurring over Antarctica during the polar Spring Even though this phenomenon was completely unexpected, it was quickly suggested that polar stratospheric
clouds (PSCC). formed dwint such a phenomenon) which produce the chlorine compounds responsible for the observed ozone depletion Further observations revealed the existence of three types of PSC particles: the nitric-acid trihydrate, water ce, and liquid droplets composed of sulufric acid, itric acid, and water.

From the mid-1990s onwards, modelling investigations conducted at BIRA-ASB, in collaboration with the Danish Meteorological Institute, have contributed to the understanding of the formation of PSCs and their impact on the stratospheric chemical structure. Fontern and Larsen (1996) develoloed a two-dimensional
model including all microphysicil processes responsible for the formation of PSCs and the releval heterogeneous reactions occurring on their surfaces. In addition, the effect of particle sedimentation on the hinal polar ozone loss was underined and they obtained a PSC climatology in good agreement with existing observations. Daerden and coworkers extended this model to three dimensions, allowing the first simulation of an Antarctic winter that include detailed PSC microphysics and an explicit treatment of sedimentation.This study is currently ongoing at BIRA-ASB using new generations of observational data of PSCs and relevant
chemical compounds. Viscardy and his colleagues, in collaboration with Pitts (NASA Langley Research Cente USA), recently demonstrated that such a model is able to reproduce satisfactorily the areas covered by PSCs
Picture of Polar Stratosshheric Clouds as observed during the THESEE
Arctic fied campaign in winter 2000 Picture take a te Ssange, the

Historical References

Selected References

The troposphere - the lowermost atmospheric layer, in direct contact with the Earth's surface - was not a of A PhD thesis carried out under the supervision of Guy Brasseur II retrospect, the absence of troposshheric studies at BRAA-ASB during the first decades of its existence might sound surprising given the tremendous interest received by tropospheric composition since then - after all, the air we breathe is tropospheric unfortunately not as pure as we'd like it to be, and tropospheric composition changes are believed to be the single most important cause of anthropogenic climate change. But attludues towards (un)clean air were
different back then: people were allowed to smoke about verryhere, the Rio Conference was yet oc come and with it the concept of sustainable development.

Matters were slighty different in the United States, where severe air polution (smog) in major cties had prompted reguations of pollutants emisions as well as sustained efforts to understand its causes. In the late 1980s, it was realized that smog was more than just a local phenomenon due to human activities in big cities Understanding its causes required a global view considering (among others) the critical role of long-range in smog formation through complex chemical processes. Clearly, global tropospheric chemistry model was in order. It had to be three-dimensional (longitude, latitude, altiude) due to the strong heterogeneity of tropospheric composition; and it had to account for all major processes - transport, chemistry, emissions and deposition - known to influence the concentrations of key pollutants.

The development of such a model was to be the main objective of the above-mentioned PhD student JeanFrancois Müler). Guy Brasseur, having recently lett Belgium to the United States, where he would head first section, then an entire division of the National Center for Atmossheric Research (NCAR), Jean-François Müler was luck enough to mingle with eaading scientists in the field through frequent visists to that institution
preliminary step towards the realization of the global model was the compilation of the first global gridded A preiliminary step towards the realration of the global model was the complation of the first global givded
(atatude-Ingitude) emission inventory covering all major pollutant emission sources, including among others Ossil fuel extraction and combustion, industrial processes, forest and savanna fres, lightring and vegetation.The ollection of data being what it was in the pre-internet era, visist to libraries and embassies of large countries were paid to gather economic information required to estimate anthropogenic emissions. The estimation servations collected at NCAR in combination with geographically referenced ecosystem and meteorologicil databases.

The resulting global emission inventory was the first of fits kind. atthough its level of detail and coarse horizontal
 major building locks of the new model were developed: a model for the transport of chemical compounds by the winds, a model for "subgrid" mixing in clouds and the boundary layer, and a module for the effects of chemistry.The set of chemical reactions was unusually large, since it had to describe the chemistry of major hydrocarbons emitted by trees. II spite of the large computing resources available, elaborate tricks had to be Hvented to linit the computational costs represented by three-dimensional simulations of about 50 chemical (Intermediate Model for the Anvual and GIobal Evolution of Species), took weeks to run on a supercomputer

This model (Müller and Brasseur 1995) was the first global model accounting for the impact of biogenic hydrocarbons. It has been used in numerous studies since then, at NCAR and BIRA-ASB, investigating for example, the impact of emissions due to human activities, to vegetation fires, and to a aircraft exhaust, sometimes in the framevork of international assessments of the Intergovernmental Panel on Climate Change
IPCC) It has been used to disentangle the contributions of dififerent sources to the budget and distributions IPCC). It has been used to disentangle the contributions of different sources to the budget and distribution came the idea to use models like IMAGES as tools to put quantitative constraints on the distributions of the emissions.

This so-caled inverse modelling of emissions, ie. their optimization based on a given set of atmospheric
observations, has been actively pursued at BIRA-ASBB. especilly since satellite observations of troososheric

chemical compounds have become available in the late 1990s and early 2000 s. An advanced inverse modelling nethocology was developed to make the most proftable use of these observations. For example, the decadeto demonstrate the effect of emission regulations on NOX emissions in Western Europe and in the United States, and to withess and quantify the fast emission increase in China consecutive to its formidable economic expansion since the mid- 1990 s. Observations of organic compounds from the same instruments were used to onstrain hycrocarbon emission due to vegetation and to vegetation fires. Even better, ofsion the oxidation of biogenenic tyyrococarbons. Formic acid was shown to be the dominant source of cloud and rain acidity over areas such as Amazoriia and Siberia.

The fact that such a large formic acid source remans as yet unexplained illustrates perfectly the vast ocea of our ignorance regarding the emissions and degradation mechanisms of large biogenic hydrocarbons. Thes compounds are however beieived to be the dominant source of organic aerosol, itseff the largest single (or realist') scientists concluded that the effects of biogenic hydrocarbon oxidation simply cannot be knoul from laboratory experiments, because alaboratory conditions are too different from the real world, and because thousands of chemical reactions are at play This provocative statement intitated a long-term effort at BIRA IASB, in collaboration with a team at KU Leuven led by Jozef Peeters, aiming at reducing this knowledge gap and developing models capable of handing the complex chemistry of biogenic hyyrocarbons. Athough this objective still isn't achieved today, considerable progress has been made, and thousands of reactions are take into account in our models which also calculate aerosol formation, with some success. These developments

Selected References

(credit: AfP Photo/Wang Zhao

BALLOON OBSERVATIONS

Christ Amelinck and Paul C. Simon

Strataspheric balloon at eeling altitude fully
inflated. Phototogaphy taken fiom the the gonde

 "Garnerin ascending and descending" "in his
parachute, the
.chareses 8 Robetrs
balloon"

a record atitude of 21872 m for a manned balloon. These first explorations of the stratosphere were followed in Belgium, record of distance at that time) at an altitude of 15500 m

Next important step regarding the atmosphere was the development in the 1890 of unmanned meteorological balloons in paper, silk and rubber, carrying small pressure and temperature sensors and an onboard paper recorder. It is with these new balloons that Léon Teisserenc de Bort and Richard Assman discovered in 1902 the warming of the atmosphere above $11-12 \mathrm{~km}$, that is the existence of the tropopause and the stratosphere, in contradiction with the generally accepted idea of a permanent cooling of the atmosphere with altitude up to zero Kelvin around 50 km . Further most important progress in the field was the development of a radio transmitter by Pierre Idrac and Robert Bureau at the French National Office of Meteorology in 1918 allowing he transmission of temperature, pressure, humidity, wind speed and direction measurements, independently of he improbable recovery of the payload, leading to the concept of radiosonde. First used in 3 stations during the Iternational Polar Year in 1931 - 1932 , the concept was adopted by the international meteorological community after the second world war, performing now twice a day ascents from 200 stations distributed around the world, which is about 550000 ascents per year.

The next major step in ballooning was the use of polyethylene material and helium for inflation, as tested first by Otto Winzen in 1947 in Minnesota, a technique rapidly adopted by the US Air Force and Navy for high altitude manned and unmanned flights, but also by John Wincker and Edward Ney at the University of Minneapolis for scientific research applications, the subject of this chapter.

The merit of the development of a scientific balioon program in Europe, used later by BIRA-AAB, French and more generally all European scientists, returns to Jacques Blamont, director of the CNRS Service d'Aéronomie aboratory in France, who, after a post-doc at the University of Minneapolis in 1958 , convinced the French space research committee to invest in a balloon program. He rapidly built a technical team under the lead of Robert Régipa. After few test flights in France, a first successful field campaign, consisting of three flights, took place in 1962 in Kerguelen Island, the magnetic conjugated location of Minneapolis in the Southern Hemisphere, Soon after, five balloons were flown from a new range in Aire-sur-l'Adour in South West France, next to the "POTEZ" facility where the balloons manufacturing was also transferred to, and another range built in Gap. Tallard in the South-East of France for summer flights, when stratospheric winds are blowing from the East. I
celining altitude drawn by PRobert Regipiad
 CNES and, in the late sitititis, by bir B-

Of Joseph Crocé-Spinelli, Théodore Sivel and Gaston Tissandier, during which the two first died because the too high altitude for humans to survive. Finally, the Germans Arthur Berson and Reinhard Süring reached Was used by the Swiss Auguste Piccard who reached 15781 m with Pay , Kiper altitudes, a pressurised gondola Was used by the Swiss Auguste Piccarrd who reached 15781 m with Paul Kipfer in 1931 and 16201 m with the
Belgian Max Cosyns in 1932 , for investing cosmic rays, a technique further applied by the U.S.S.R. ai force with

Cen developed for caurer was changed later for "Zodiac Espace". Larger balloons of up to $400000 \mathrm{~m}^{3}$ volume were atmospheric and astronomic research programs, a facility which would be used very soon by BIRA-IASB.

Selected References

flating phase of stratospheric balloon in Gap

Take off in Aire sur r'Adour in France (credit: cNes).

SOLAR UV RADIATION
Paul C. Simon
Stratospheric ozone is mainly produced by the photodissociation of molecular oxygen in the upper stratosphere, around 40 km altitude, corresponding to the so-called "atmossheric wiidow" for solar radiation round 200 nm . Indeed, the absorption of solar UV irradiances by molecular oxygen is decreasing riaiti, the wavelength range from 200 to 242 nm . The ozone absorption spectrum is also decreasing sighificantly towards shorter wavelengt
budget in the stratosphere.

As stratospheric balloons were able to reach this altitude, the measurement of fin stu ultraviolet solar irradiance that range was possible. First attempts were made by Brewer and Wison (University of Toronto) in 1964 using a balloon-borne radiometer In I 1968 and 1969, the instrumentation and the experimental procedure were significantly improved at BIRA-ASB by Marcel Ackerman, Dirk Frimout and Roger Pastiels and, in these two years, three filights took place. From spectra obtained for different solar elevations, the ultraviolet irradiance outside the Earth's stmosphere was deduced by extrapolation to zero air mass (i.e. at a solar elevation of 90°

Gondola with UV
spectromete for balloo sientrometerer orballoon
tight in 11688 and 1969

Payload recovery in the countryside.

In the beginning of the seventies, a new instrument, first developed successfully for rocket solar irradiance at the ceiling altitude. Flights took place in 1972 and 1973 , providing new reliable values, which were adopted by the international community for photodissocation calculations and stratospheric modeling. Fiights wer repeated later, in 1976 and 1977 , for minimum and low solar activity conditions in order to detect possib

The know-how in ultraviolet radiometric calibration and in instrumentation for solar observations led to successful proposal for the Spacelab I mission in 1978 , made in collaboration with the "Service d'Aéronomie" of the "Centre National de la Recherche Scientifique" (CNRS, France), the "Landessternwarte Köigstuh' (Heidelberg, Germany) and the "Hamburger Sternwarte" (Hamburg-Bergedorf, Germany),
In parallel with the balloon-borne observation, full disc solar irradiation fuxues between 150 and 210 nm have been determined by Denys Samain and Paul C. Simon in 1976 , from rocket radiance spectra obtained in obtained in 1972 and 1973 around 200 mm

Selected References

.

.

NFRARED REMOTE SENSING FROM STRATOSPHERIC BALLOONS

Christian Muller

1963, Marcel Ackerman proposed to study solar absorption spectroscopy at very high zenith angles including even pointing below the horizon from either a mountain observatory or a hig ain ude stratospheric balloon Sor a long time by Marcel Nicolet for the influence of the Sun on the ionosphere before sunrise ad after sunset.

The application to observations had not been envisaged because of the technological dififutties of pointing precisely balloon payloads. The technical solution came from a stabilised, solar pointing, balloon gondola: the spectrometer on board was an Ebert-Fastie spectrometer, designed and built at the institute. The use of a quite low sensitivty detector imposed a very Iuminous instrument with a low spectral resolution, compared to today's standards. This instrument, operating in the 2.7 micrometer atmospheric window from an altitude of 35 m , showed absorption spectra of methane and nitrous oxides. Marcel Nicolet knew that these constituents were source gases of nitrogen oxides and hydrogen compounds in the upper atmosphere. They could thus intervene in statospheric ozone chemistry and in the io production in the upper stratosphere. Moreover, a weak band of nitrogen dioxide. Nevertheless, everyone was surprised at that time to observe absorption lines of nitrogen dioxide.

 high simulated ditrogen dioxide value (upper smooth curve
indiciates an intusion of troposphenicic ari in the stratosshere

Stratosphere demonstrated that stratospheric nitic oxides had a natural source and snik. This point, together with supporting modes, les the authorites of the United States, Fras
commercial operations of stratospheric supersonic transport panes.
The programme went on, showing in subsequent balloon fighhts important temporal variations of nitrogen oxides. A 1975 flight, imed at hydrogen chloride, also provided the first observation of this molecule in the ines and the anteriority confict that resulted from this fact was never fuly resolved.

In 1977 , the design of the space-borme grille spectrometer had begun and the Institute preferred to give priority oglobal coverage from space with the development of a new generation of infrared grille spectrometerThe infrared balloon programme was never resumed

Selected References

Sabilised gondola "Astroabe" with the infareed grille spectromete.

BALLOON INTERCOMPARISON CAMPAIGNS

Jean-Pierre Pommereau (LATMOS) and Paul C. Simon

Locations of the variuss instuments
notecomparison campaign in 1981

This was the objective of a Balloon Intercomparison Campaign (BBC) intitiated by NASA and held at the US Nationa Scientific Balloon Facility (NSBF) in Palestine, Texas in 1982.Thirteen instruments were distributed on four gondolas mounted on large $1500000 \mathrm{~m}^{3}$ balloons to be flown in paralle on the same day. Unfortunately, the launch of one of them failed but the experiment was repeated, with full success, the year after. The esults of these originating from spectroscopic data uncertainties and proflie ertrival techniques, resulting in a significant
reduction of differences between NO_{x} measurements, as well as in the qualification of satellites instruments -TTR ATMOS on board the Space Shuttle and the microwave spectrometer on board NASA UARS) whose prototypes were flown during BIC in preparation of space fights.
Another balloon campaign, the Balloon Ozone Intercomparison Campaign (BOIC), taking place in the US in 983-1984, focussed on small in situ instruments dealing with the measurement of ozone, to characterise the

Altogether, the above balloon campaigns resulted in a great improvement of the performance and accuracy of Ategetrer, the above balloon campaigns resulted in a great improvement of the performance and accuracy of of great help for the better understanding of the ozone and NO_{x} photoct,

The MAP/GLOBUS Campaign

Another open question by that time relative to stratospheric nitrogen oxides $\left(\mathrm{NO}_{x}\right)$ species was the amplitude of their diurnal variation because of the photochemical reactions leading to the fast change of their
concentrations at sunset and sunrise, and their varaitions during day and night To this end an interational concentrations at sunset and sunrise, and their variations during day and night.To this end, an international
project on stratospheric chemistry and dymamics, the "Global Budget of Stratospheric Trace Constituents" project on stratospheric chemistry and dynamics, the "Global Bugget of Stratospheric Trace Constituents"
(GLOBUS) was implemented in the frame of the "Middle Atmosphere Programme" (MAP) of the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP). Two new balloon campaigns were set up in Aire-surI'Adour (South West France) in 1983 and 1985 . The 1983 campaign, which dealt with the measurements of short- and long-lived species ile ozone, nitrogen oxides, halocarbons and various radicals in the stratosphere, hvolved the filight of 19 instruments including newly developed in situ chemiluminescent sensors, matrix solation and cryogenic samplers, the BIRA-ASB ion mass spectrometer and an UV spectrometer, and the prototype of the German CRISTA cryogenic R R spectrometer in preparation for S Space Shuttle filight Thirteen
balloon fights were performed in 1983 , including the first ever made slow descent by releasing the gas of the baloon fights were pertormed in 1983 , including the first ever made sow descent by releasing the gas of the
balloon allowing in situ sensors to perform high-resolution altitude sampling. Complementary measurements
 985 campaign was more specifically dedicated to NO_{x} studies to better understand the still disputed total 985 campaigh was more specificaly deeicated to NO_{x} studies to better understand the stil disputed total

Intercomparison ozone campaign, Gap-Tallard, France,
June
I
In
, coordinated by Marie-Lise Chanin
 tary and Space Science, 31 (7),707-72.
doi: $10.10160032-0633(83) 90116-2$

MAP/GLOBUS 1983 campaign, Aire sur ' 'Adour, France
coordinated by Dirk Offerman

MAP/GLOBUS 1985 campaign,Aire sur ' 'Adour, France,
 P. Naudet P P Ifr and M.P.McCormick (1989). stanole, G. Maddrea

flown simultaneously. Systematic differences as large as 20% between ozone profiles derive) sondeslar absorpion and in situ techniques were reported during this first attempt demonstrating the need of furthe improvements in instrumentation and retrieval methodologies

Soon after Crutzen's suggestion in 1970 of the important role of nitrogen oxides $\left(\mathrm{NO}_{\rtimes}\right)$ on stratospheric Ozone and the threat to ozone of the emission of these gases by a fleet of high altitude supersonic Concorde aircrat, buitt F France and UK (see chapter 9), a number of instruments were designed for measuring th
NO_{x} compounds and flown on high altitude balloons. The first instrument flown was the infrared grile Spectrometer of ONERA, in collaboration with BRA-IASB, in 1973 (see chapter 6), soon followed by UV visibl spectrometers in Japan and France, mid-IR spectrometers in UK, FTR and microwave instruments in the US, etc. However, large differences were observed between the NO and NO_{2} retrieved concentrations reported by the various instruments, requiring further investigation and reduction before reliable $N \mathrm{~N}_{x}$ information could be obtained.
cycles. In addition, new comparisons between in stu and remote-sensing observations provided information on the performance of the sensors. A series of 3 flights carrying the same instruments were launche sequentialy during a ful 24 h period, the first between evening and early morning, the second between late fight and afte noon, and he thir detween monis and

Overal, the MAP/GLOBUS campaigns resuted in a better understanding of NO_{\times}photochemical cycles (NO NO_{2} and NO_{3}), and alowed improving the retrieval of the two first NO_{2} measuring satelites instrument the NASA Stratospheri Aerosol and Gas Experiment (SAGE II and Solar Mesospheri Experiment
well as the ozone profil eretievals of the SBUV instrument on board the NASA Nimbus-7 satellite.
BIRA-ASB was strongly involved in those measurements, performing in addition positive and negative ions measurements with cryogenic mass spectrometers, developed in the laboratory, with which acetonitrie mixin ratios were derived from positive ion spectra, showing arge deviation compared to reference profiles of u visible ranges were also performed by means of spectrometers ceveloped at at BIRA-ASB, providing reliable ozone and nitrogen dioxde profilies as well as ozone from ultraviolet absorption measurement by means of filter radiometer aready forrementioned.

Selected References

MASS SPECTROMETRY
Crist Amelinck and Niels Schoon
Starting in the mid-seventies, the mass spectrometry group of BIRA-IASB, led by Etienne Arij, has carried out situ measurements in the stratosphere with balloon-borne mass spectrometers for almost 25 years. This research has strongly contributed to the present knowledge of the stratospheric natural ion chemistry and compostion and res
Earth's atmosphere.

etermination of the Natural Stratospheric Ion Composition: A Challenging Problem

Because of the importance of the ionosphere ($>65 \mathrm{~km}$) for long-range radio wave propagation, the natural

 on composition in the lower part of that region of the atmosphere (D-region), obtaned using sounding -region modeds led to for some time by the mid-seventies. Those lewe ling stratosphere, but in situ neasurements in the stratosphere had not yet been performed.lon composition measurements in the stratosphere formed a real challenge and only the BIIA-ASB group and a German group (Frank Amold and co-workers, MPIK, Heidelberg) were successul in performing these tratosphere (only a few thousand ion pairs per cm^{3}). . Furthermore, ions had to be sampled from a relatively ow pressure environment (a few hPa) into a mass spectrometer, which itself had to be operated at high accuum. Because of power restrictions accompanying balloon experiments, mechanical pumping systems could not be used for this purpose. Therefore, a new instrument was developed at the Institute, mainly consisting of a quadrupole mass spectrometer buiti into a high speed cryopump. The cryopump was suspended on a large Iluminum flange on which was bolted a hermetically sealed and pressurised aluminum container housing all
power supplies as well as the electronics control harclware. Instrument control and transmission of accuired data was performed via a real-time telemetry infrastructure. The entire instrument was integrated in an aluminum shock aborbing support tructure in order to reduce damage during the landing phase.

Numerous launches of this instrument by stratospheric balloons, operated by the Balloon Division of the Centre National d'Etudes Spatiales (CNES), took place from Gap-Talard and Aire-surl'Adour in France (see previous Section). Measurements were carried out between 20 and 45 km altitude (the upper linit was (sen led in the

Ion mass spectrometer in the laboratory.

Passive and active chemical ionization

Idencheation of Positive and Negative Ion Families in The Stratosphere and

 Derivation of Verticial Profiles of StratospNatural lon Composition Measurements
In the stratosshere, ions are produced by galactic cosmic radiation, which is non--selective source of ionization mainly resulting in the formation of electrons, $\mathrm{N}_{2}{ }^{+}$and $\mathrm{O}_{2}+$ ions. As the electrons rapidly attach to oxygen
molecules forming $\mathrm{O}_{2}{ }^{-}$ions, a positive ion/negative ion rarefied plasma is readily formed. Since the ions can molecules forming O_{2} - ions, a postive ion/negative ion rarefied plasma is readily formed. Since the ions can
survive for a few hours before being lost by recombination with ions of opososite charge, they undergo many survions with stratosheric trace gases fnally resuting in stable teminal ion species.

Stict
Stratospheric positive ion spectra showed the presence of two main families of positive ion species: $\mathrm{H}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)$ n (proton hydrates) and $\mathrm{H}^{+}+X\left(\mathrm{H}_{2} \mathrm{O}\right)_{m}$ (non-proton hydrates). High resolution mass spectra obtained by the
BIRA-ASB group allowed the first unambiguous deteremination of the mass and of eritica con profies of the unknown compound x (41 atomic mass units) which is now of vertical concentration acetonitrile $(\mathrm{CH}, \mathrm{CN})$.known surface sources of which are biomass burning direct releases from ind trafic exhaust.

Negative ion spectra also showed the presence of two main negative ion families: $\mathrm{NO}_{3}\left(\mathrm{HNO}_{3}\right)$ nad HSO $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\mathrm{HNO}_{3}\right)_{m}$. The members of the former family are converted to members of the latter family by ion molecule reactions with gaseous sulfric cacid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. As was the case for $\mathrm{CH}_{3} \mathrm{CN}$, avilible experimenta
data allowed the derivation of suratosheric data allowed the derivation of stratospherici $\mathrm{H}_{2} \mathrm{SO}_{4}$ concentration profiles from the ion abundances in the negative mass spectra. This was a major scientific achievement, given the importance of this compound as maior constituent of stratossheric aerosols.

From Passive to Active Chemical Ionization Mass Spectrometry

Nitric acid is an important reservoir gas in the stratosphere which is involved in ozone depletion at polar and mic-atitudes. Accurate in situ concentration measurements of this trace compound and some others in the stratosphere can be obtained by coupling a flow tube reactor to a balloon-borne mass spectrometer. In this are introduced into the reactor at a fixed distance upstream of the sampling orificice of the mass secactrontet When being transported by the ai f flow, these reactant ions then selectively react with some of the etrace gase which are present in the air flow, resulting in the formation of specific product ions. Absolute concentrations of those trace gases can then be determined from the product and reactant ion abundances in the mass spectra
the experimentaly determined reaction time and the rate constants and the product io distributions of the reactions between the reactant ions and the trace gases.
a close collaboration with the Physiklisches Institut of the Universitat Bern (group of Prof: Emest Kopp) dere Laboratore de Physique et Chimie de IEEnvionnement of the University of Orléans (group of Prof André Berassin), a new field instrument was built at the Institute incorporating a double focusing MattauchHerrog magnetic mass spectrometer and an octopole ion guide. The aim of the new instrument, called ACSIMS (Measurement of Atmossperic Constituents by Simultaneous Ion Mass Spectrometry), was to perform simultaneous measurements of ftratospheric NO_{3} compounds by sing highly selective reactant ions
such as $\mathrm{CO}_{3} ; \mathrm{Cl}_{3}{ }^{-}$and $\mathrm{CF}_{3} \mathrm{O}$. Several balloon filights of the MACSIMS instrument were carried out in the Such as $\mathrm{CO}_{3}{ }^{-}, \mathrm{Cl}_{3}{ }^{-}$, and $\mathrm{CF}_{3} \mathrm{O}^{-}$. Several balloon fights of the MACSIMS instrument were carried out in the
1990s from the CNES launch sites in France and from the CNESINTA base near Leon in Northern Spain The in situ measurements clearly demonstrated the applicability of different selective reaction schemes to derive accurate stratospheric HNO_{3} concentration profiles. These balloon experiments clearly contributed o pave the way for field applications of chemical ionization mass spectrometry (CIMS), a technique which is now regularly used in atmospheric research worldwide.

Throughout the complete history of balloon-borne mass spectrometry at the Institute, the engineering department has strongly supported the development of the different instruments. Besides the magnetic mass department has strongly supported the development of the different instruments. Besides the magnetic mass
spectrometer, hat was delivered by the University of Ber, BRA-ASB conceived the full control electronics. ranging from the central microprocessor, over the steering of every valve and meter, up to the communication section with CNES' on board telecommand and telemetry equipment. The implication of the mecharical worlshop of the Institute was equally important.They designed and manufactured all the mechanical hardware from the shock absorting gondola structures to boxes in which the electronics were lodged. Finally the engineering department was responsible for a user friendly ground support sysytem allowing to command the

Selected References

A.
 The double foubusing focusing magneticnetic mass spectrometer is s mas
Spectrometer Spentrometere which uses both direction and delocity focrisin
and therefere an ion beam ofa fa given masscharge is brough to a focus when the ion beam is intitill diverging and contain
ions of the same mass and charge with different translationa energies. Separation of the ion beam according to massclcharg enerries. Separation of the e to beam according to mass charge
values is accomplished by the action of a permanent magnet

- x

lon mass spectrometer gondola during caried
to the site athe CNES//WTA base neari in León.
(Nothen

FIRST ORBITAL OBSERVATIONS
Paul C. Simon

Sunset view from shuttle. (credit: NASA)
Paul C. Simon
After landing on the Moon in 1969, NASA set up a programme to modify the Apollo hardware for scientific missions, leading to the US first space station Skylab which was in operation from 1973 to 1979. The Space Shuttle programme, approved at the same time, was supposed to refurbish Skylab, but did not succeed because of delays in its development. Post-Skylab NASA space laboratory projects included Spacelab (in collaboration with ESA), and Space Station Freedom, the precursor of the International Space Station (ISS).

The Space Transportation System (STS) programme was initiated in 1969 by the US National Aeronautics and Space Administration (NASA). STS is the official name of the Space Shuttle. It was the only new orbital spacecraft planned at that time, no other new US launchers were foreseen. In Europe, the Ariane programme was initiated in 1973 by ESA with a significant commercial success. To reduce the cost of space exploration, the STS was conceived to be partially reused, a feature which made the Space Shuttle unique among spacecraft, as most rockets are usually only used once.

The Space Shuttle has three main parts: a reusable orbital vehicle, two reusable solid rocket boosters and an external fuel tank of liquid nitrogen and oxygen, lost after launch. The orbiter has a large capacity cargo bay which enabled the orbiter to carry payloads for orbital operations (experiments and/or satellite repair), launches of military, operational and scientific satellites, and space construction like the future ISS.

Once arrived in its low Earth orbbit, the Shuttle usually flew at an alttiude of 320 kilometres above sea level. The basic mission duration is 7 days in space, with a crew of up to eight astronauts. The crew controls the deorbiting or the next mission with a turnover up to once a month as defined in the definition phase of the project.

The European Spacelab programme was formally adopted in 1973 during the European Space Conference Brussels. Spacelab was a large modular and reusable laboratory, designed by ESA, which fitted into the carg bay of the Space Shuttle. Spacelab consists in a suite of different components: pressurised modules where the rew can work in "short sleeves", unpressurised platorms ("pallets") exposed to space environment, and othe hardware e.g. to launch satellite or to make laboratory experiments specific for each mission. Each component can be assembled in different configuration, depending of the mission objectives.

The Spacelab 1 logo, designed by cyr
Firimout, heb brother of of irk firimout. Dirk
 and despons sibib forthterast scsience
training of the Spacelab 1 crew.

106 Chaper 7

The irist tull mission was Spacelab (SIS-9), Iaunched on November 28, 1983 for a duration of 10 days, 7 hours jint SAANASA mission, with a large variety of experiments. Alogether 73 separate investigations were carried atre physis, atmospheric physics, Earth observations, fife sciences, materials sciences, space plasma physics and technology. Among them, three experiments were performed by BIRA-ASB scientists and ngineers, in collaboration with other laboratories: Grille Spectrometer, Solar Spectrum (SOLSPEC), and ALAE, the investigation of Atmospheric Hydrogen and Deuterium through measurement of Lyman-Alpha emission (see next sections). A re-fly was rapidly decided and scheduled in 1986. Unfortunately, the Space Shuttle Challenger disaster on January 28, 1986 suspended the STS launches until 1988.

In the meantime, the ATLAS (Atmospheric Laboratory for Applications and Science) programme, pertaining to the "Mission to Planet Earth" was defined, with a series of Spacelab flights to study the Earth's atmosphere and the Sun's influence upon it over one solar cycle, which lasted II years. While nine ATLAS missions were originally planned, only three flights were actually carried out, with launches on March 24, 1992, on April 8, 1993 and on November 3, 1994. Despite its successes, the series was interrupted for budgetary reasons. The Viscour Dirk Frimout was selected as a payload specialist for the ATLAS I mission

THE GRILLE SPECTROMETER
Christian Muller
At the beginning of the Spacelab programme, scientists were informed that the Spacelab payload would have a two weeks turnover comparable with an aircraft and operate experiments from a pressurised module. ESA Planned on one test filght, four demonstration filights and 20 operationa flights. Uniortunatey, the E EA cound lights were grouped on the first test flight togesther with an equal number of NASA experiments and a few fights were groupece o
Japanese instruments.

The Grill Spectrometer which had been so successful on balloons (see chapter 6) and airplanes was selected Office National diftudes et de Recherches Aerosspatiales (ONERA) in France and BIRA-ASSB.

The main scientific objective of the Grille Spectrometer was to obtain the vertical distributions of ten nolecules relivant to the ozone chemistry at latitudes different from the ones which had been covered by balloon flights. Measurements of atmospheric crace gases have been performed during the 10 day mission of Spacelab I from November 28 to December 8, 1983 . Observations have been performed for the first
time through the whole middle atmosphere over a wide range of latiude and seasons, for a set of trace constituents of basic importance to the knowledge of photochemistry and transport processes occurring in he middle atmosphere.The results cover the entire spectral range related to $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{CH}_{4}, \mathrm{~N}, \mathrm{O}, \mathrm{CO}_{2}, \mathrm{CO}_{2}$, $\mathrm{O}_{3}, \mathrm{HCl}, \mathrm{HF}$ and $\mathrm{H}_{2} \mathrm{O}$.
A second objective was to test the feasibility of extending these observations to the upper stratosphere mesosphere and higher in order to understand the chemistry of theser regions and in particular to constrain part due to to the specficic conditions of the filight, the mesosshhere being particulurly active during the Southern summer solstice.

The Grille Spectrometer took advantage of the favourable timeline and of the extra day in orbit to perform more than 65 successful solar occultation runs during its re-fly on the ATLAS I mission. It succeeded in btaining spectra pertinent to it ten target molecules from the uppertroposphere to the lower thermosphere New information on HCI vertical profiles was obtained, for assessing long-term trends of this important tratospheric species.

The gille infared
spectrometer
Detail of the front optics of

 almost continuousy lit and 5
enhanced the NO production.

Spacelab 1 team in Houston, Texas.

The Grime Speccrometer was a alarge instrument, which enabled to be manipulated manually during test, could be seen as well as heard. The instrument was, at that time, arready controlled by an "Electrical Groun Support Equipment" "(EGSE), which was in fact a "mini-computer" generating commands and recording an displaying the data. It was aready possible to display quick-looks on computer screens. The programming of EGSE was aso used as instrument monitor, but in the NASA environment, all technological data and flight commands were on flight syytems provided by NASA. The instrument was fully programmable: it had also pre-programmed sequences burnt both in permanent memories and in a "Mass Memory Unit" which could be uploaded during fight.
During flight, the instrument was operated on a 24 b basis with two shifts of the ground teams. The ground team itseff was divided in an offliline and an online team which received both ESA and NASA support.
In conclusion, the Spacelab grille programme had demonstrated the possibility to probe the global atmosphere from the upper troposphere to the thermoshhere using a space-borne instrument tt was the precursor of the current Earth observation system.

Selected References

he solar spectrum Experiment

Paul C. Simon and Didier Gillotay

The solar electromagnetic radiation is the primary source of energy for the tersistra envionment.The largest wavelength shorter than 320 nm represents only a small fraction (2\%) of the total incident flux. This spectral range is of fundamental importance for aeronomic processes taking place in the troposphere, the middle tmosphere and the thermosphere

Because of the complexity of the atmospheric processes and the strong interplay and feedback between transport, chemical composition and radiaitive budget, atmospheric and climate studies should include observations of the spectral solar radiation and its varibility in close relation with the atmospheric constituents stratosphere. It is produced by photodissociation of molecular oxygen by solar radiation of wavelengths Shorter than 242 nm . It provides the main heat source through the absorption of solar ultraviolet radiation and thus determines to a great extent the temperature profile in the stratosphere and the general circulation zone therefore couples the stratosphere and the tropospheric climate through complex processes involving radiative, chemical and dynamic effects.
Consequently, the knowledge of solar spectral irradiance values as well as their temporal variations is fundamental in studying the chemical, dynamical and radiative processes in the atmosphere. In addition the study of solar variaility is of crucial importance to distinguish between its impacts on the terrestrial environment in comparison with anthropogenic perturbations.
The ultraviolet range of the solar electromagnetic spectrum is characterized by temporal variations which directly affect the Earth's atmosphere. Two time scales are generally considered in reation to atmospheric sudies. the IT-year activty cycle and the 27 -cday rotad

The "Solar Spectrum" (SOLSPEC) project purposes were to measure the absolute solar irradiance in the wavelength range from 200 to 2400 nm and its temporal variations with uncertainties of 2% in $\mathrm{UV}, 1 \%$ in the isible and 3% in the infrared range. The required accuracy and precision in the measurements was achieved by means of pre- and post-filigh calibrations and an onboard calibration device.

The composite ATLAS 1 spectum, using rocket
datat foom 0 . n m to Ymanalipha, UARS (SUSIM and SOL. STCEE Jata fiom Lyman-alphat to 200 nm
ATLAS.SSUV,

It concept has been defined at the end of the seventies, based upon the collaboration between BlRIASB, the "Service d'Áronomie" "(now LATMOS) of the "Centre National de la Recherche Scientifque"
(CNRS, France), the "Landesternwarte Köigstuhl" (Heidelberg, Germany) and the "Hamburger Sternwarte" (Hamburg-Bergedorf, Germany)
The instrument consisted of three double grating spectrometers covering the ultraviolet from 200 to 370 nm) , visible (from 350 to 900 nm) and infrared (from 800 to 2400 nm) wavelength ranges and an onboard mechaical shaff which rotates with a recision of 2 rcsec The onboard calibration device consists of two deuterium lamps, two tungsten ribbon lamps, and one hollow cathode lamp. The deuterium and tungsten ribbon lamps are used to monitor changes of the instrument response either on the ground or in space. The hollow cathode lamp permits a determination of the instrument wavelength scale and band passes of the spectrometers.The instrument was calibrated against a black body a
3300 K in Heidelerg. A set of stable tungten and deuterium lamps was used as transfer standards.

The SOLSPEC instrument flew for the first time during the ESANASA Spacelab I mission, on board the Columbia space shuttle (STS-09 mission).The Sun pointing was performed by the shutte itseff. Scientific data
were stored and displayed directly on the instrument ground suport equipment and controlled in real time by the SoLSPEC team, at Johnson Space Flight Centre, in Houston. At the end of the mission, after retrieval the instrument was again re-calibrated.
The ATLAS missions, on board NASA space shuttles, were part of the NASA's "Mission to Planet Earth", and SOLSPEC was selected to re-fly during this series of misisions, with the purpose to quantify the long term cycles were needed.

ATLAS I experiments focused on four scientific discipines: atmospheric science, solar science, space e plasma physics and astronomy. This programme was closely related to the NASA's Upper Atmosphere Research Satellite (UARS), launched from the Space Shutte in September 199/ and including two other sola spectroradiometers

SOLSPEC was jointly operated by the NASA Pay oad Operation Control Centre at the Marshall Space Fight Centre (
chapter
16).

elected References

Mission to Planet Earth
The awareness of the environment of the Earth and d
the sun radiation level and spectrum is of importance The awarenessotione evel ind spectrum is of importance
the sun radian loth
to borth-based and space-borne systems as well to both Earth-based and space-borme systems as we
as to a daranced studies on olimate. Montoring the Sun
radiation outside of the Earth atmosphere over a larg
 electromagnetic spectrum and correlating with prarale
observations with other space missin and on on groun
helps provide the accurate data required to support helps provide the accurate data required to support

INVESTIGATION OF ATMOSPHERIC HYDROGEN AND DEUTERIUM THROUGH MEASUREMENT OF LYMAN-ALPHA EMISSION Paul C. Simon

The experiment "Atmospheric hydrogen and deuterium through measurement of Lyman-Alpha Emission" (ALAE), has measured for the first time, the distribution of atomic deuterium (heany hydrogen) in the upper atmosphere in order to provide a better understanding of atmospheric processes. When Earth water evaporates into the atmosphere, ultravilet solar radiation breaks down the water vapour into hydrogen and
deuterium atoms, as well as oxysen atoms T The hydrogen atoms rise higher than the heavier deuterium The deuterium atoms, as well as oxygen atoms. The hydrogen atoms rise higher than the heavier deuterium. The and free protons (hyyrogen nucle) in the corona of hydrogen gas that envelops Earth. Deuterium reative abundance compared to hydrogen is an indication of atmospheric turbulence in the lower thermosphere Atter determining the hydrogen/deuterium ratio, the rate of water evolution in Earth's atmosphere can be better studied.
ALAE was developed at BRA-IASB in collaboration with "Le Service d'Áronomie"e of "Centre National de解 workshop and important theoretical studies were carried out by Gaston Kockarts.

ALAE measured the extreme ultraviolet radiation of hydrogen and deuterium at 121 nm , the wavelength of the Lyman-alpha emissions lines. These two hydrogen isotopes radiate at slightly different wavelengths. The comparative strength of these emissions indicates the ratio of hydrogen to deuterium atoms and how the gases mix in the upper atmosphere enabling the hydrogen/deuterium ratio determination.
A spectrophotometer associated with two absorption cells, one filled with hydrogen and the other with deuterium, was used in studying various sources of Lyman-alpha emission in the atmosphere, in the interplanetary medium, and possibly in the galactic medium. LLyman-alpha emisision is asso possibly present in aurora zones, equatorial the neutral atmosphere.

ALAE flew twice, once during the Spacelab I mission in 1983 andonce during the ATLAS I mission in 1992 collecting measurements of hydrogen and deuterium atoms, from the mesosphere, the thermosphere, the
exosshere and the interplanetary medium.

A maior accomplishment of the ALAE experiment was the quantification (first ever) of the amount of deuterium in the thermosshere. It also saw auroras in the Northern and Southerm hemispheres. Furthermore, m , below which the emission is siggificantly absorbed by O_{2}. Since the isotopic ratio is fairly well known at is altutude, the hydrogen densty at 85 km can be inferred. This is a most important parameter, because the or tom the the by reactions between oxysen and hydroen species

The ALAE experiment consisting of spectrophotometer with

The EURECA platorm developed by ESA. The ORA
instument is located at he top-eft of the modul next to the Sosp experiment with the red cover.
(credit: MBB/ ERNO)

THE EUROPEAN RETRIEVABLE CARRIER
Paul C. Simon
The EUropean REtrievable CArrier (EURECA) was launched on July 31, 1992 by the Space Shuttle Atlantis The launch mass of EURECA was 4490 kg with a payload capacity of up to 1000 kg . At that time, EURECA was the largest spacecraft so far built and flown by ESA.The EURECA pay Ooad was deployed from the Shuttle on 2 Ausust 1992 using the Remote Manipulator System. It was raised into a so-called circular Low Earth Orbit at an operational altitude of 508 km and an inclination of 28.45°, allowing to start its scientific mission on 7 August 1992. Ater a stay of II months in space, EURECA was retrieved on I July 1993 by the Space Shuttle Endeavor and returned to Earth.

The satellite carried a number of experiments for microgravity studies, atmospheric and solar observations, and material technology investigations, including a total of 16 active experiments and a number of entirely passive payloads. Among them, BIRA-ASB was involved in two experiments, namely the "Occultation Radiometer Instrument" (ORA) to measure aerosols and trace gases in the Earth's mesosphere and stratosphere, and the "Solar Spectrum Instrument" (SOSP) to study yolar physics and solarterrestrial reationships in aeronomy an climatology.

Deployment of the EURECA sa

withth he help of the Remote | Manipulator Syste |
| :---: |
| (credit Mass) |

Photo of the EuRECA Spacecarat
release from the space Suutile on 2Aususut 1 1922 ((reedit: NASAA, SSA)

REMOTE SENSING OF THE EARTH'S ATMOSPHERE BY THE SPACEBORNE idier fits radometer
Didier Fussen and Filip Vanhellemont With contributions from Etienne Arijs \dagger and Dennis Nevejans

The Occultation RAdiometer ORA, developed by the Belgan Institute for Space Aeronomy, is a simple UV-visible instrument that was launched in luy 1992 on board the European Retrievable Carrier EURECA for a 11 -month mission. The instrument consisted of eight broadband channels, ranging from 260 to 1013 m , dedicated to the measurement of vertical profiles of $\mathrm{O}_{3}, \mathrm{NO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ number densities as well as of Use
Using the technique of solar occultation through the Earth's atmosphere, ORA recorded 7000 sunsets and Sunrises from a quasi-circular orbit at an altitude of 508 km . Athough the low-orbit inclination of the satellite (28.455) restricted the latitude coverage to $40^{\circ} \mathrm{S}$ and $40^{\circ} \mathrm{N}$, the period of measurement was particularly interesting because it presented a unique opportunity for observing the relaxation of the huge stratossheric erosol injection by the Mount Pinatubo eruption of June 1991. In particular, it was possible to infer the dynamical evolution of the particle size distribution by measuring the aerosol extinction profile at differen

A major charactersitic of ORA is its simple optics. The instrument has an optical field of view of 2° and its line of sight was aligned with the optical axis of the Sun-tracking system of the satellite. As a consequence, the apparent vertical resolution of the instrument appears to be poor $(25 \mathrm{~km})$, as it is defined by the size of the solar disk at the tangent point. However the signal-to-noise ratio was high for the same reason, suggesting that and km vertical resolution.

RA has been one of the first atmospheric sounders capable of producing a climatology of ozone profiles signalto-noise ratio.

The ORA instrument.

Simplifed view of the solar occultaion geometry as observed by
ORA. Noticice both refractive effects of the atmosphere: a change in tion tangent altitude and an apparent t lattening of the solar disc. With
atmosphere, a central ray (dashed line) would graze the Earth's
 ememited from the top of the sun are eless efefacted dhan those enite
from the bottom, esult ing in a a inhomogeneous sun fatanenigg.

Selected References

The ozone mesospheric layer as measured by ORA
compared with othe satellite instuments The

THE SOLAR SPECTRUM INSTRUMENT ON BOARD EURECA

 Paul C. SimonThe SOlar SPectrum (SOSP) is the spare unit of SOLSPEC. For this reason, both have identical design. Some of its components have been changed to meet the duration requirement of the six month mission in orbit for EURECA, instead of the I week mission on the Space Shuttle (SPACELAB I and the ATLAS series). The instrument combined three spectrometers, one for each spectral range, namely the UV, the visible and the
 mechanical shaft and rotate by using a stepping motor. Only the \mathbb{R} detection system was improved. Internal calibration lamps are included in the instrument and conssis of two deuterium lamps for the UV, and two
tungsten riboon lamps for the visible and IR spectrometers.

The scientific objectives of the EURECASOSP experiment concermed solar physiss and solar-terestria relationstips in aeronomy and climatology. Its purpose was to perform measurements of the absolute solar irradiance and its variations in the spectral range $170-3200 \mathrm{~nm}$ with an accuracy of 1% in the visible and the R range, and 5% in UV, and, because of the duration of the mission, the short term variations related to the 7 -day rotation of the Sun during solar cycle 23.

Selected Reference

SATELLITE OBSERVATIONS
Paul C. Simon
Easth's atmosphere is changing due to the increasing anthropogenic release of chemically and rediatively active species. A better knowledge of the global composition of the atmosphere and of its long-term evolution needed to assess current and future changes. Issues of primary concern since the discovery of the Antarctic ozone
 e chemical fate of stratospheric ozone In merect majition concerns have emerged with eidentification of the impat of with changes affecting the quality of the air at the surface of the earth, the oxidative capacity (or self-cleansing (apacity) of the atmosphere and the long-term evolution of the ozone layer:
Only remote sensing from satellite platforms can provide the required continuous measurements of relevan tasporeric trace species on the global scale that are needed to address these key environmental issues.
he satellite missions dedicated to atmospheric composition have been started in the 1970s mainly with instruments devoted to ozone monitoring (e.g. the Total Ozone Mapping Spectrometer (TOMS), the Stratospheric Aeroso and Gas Experiment I (SAGE I), the Solar Backscatter Ultraviolet radiometer (BUV/SBUV), ...). They were perated by either NASA or NOAA which insured the necessary continuity during the 1980s and the 1990s, with additional sounders on board a variety of satellites. A more complete study of the Earth's atmosphere was performed by the successful completion of the NASA Upper Atmospheric Research Satellite (UARS) mission, aunched in 1991 , on which some instruments kept working until 2005
n the mid-1970s, ESA contributed to the geostationary meteorological satelites with the Meteosat series liated by the World Meteorological Organisation (WMO). They are still in operation in this framework. On and definition of specific instruments and to the data analysis.

Thanks to the initiative of Christopher Readings, Head of the Earth Sciences Division officially founded in 1992 ESA became deeply involved in atmospheric missions, first with the Global Ozone Monitoring Experiment GOME) instrument, lately added to the ERS-2 satellite platform, which was launched in April 1995 and which emained operational until 201 I.The concept of this instrument was based upon the novel Differential Optica Absorption Spectroscopy (DOAS) method instead of the classical discrete multi-channel spectrometers used by the US agencies. BIRA-IASB was deeply involved in the preparatory phase, initiated by Christopher Readings o convince both scientists and engineers from the ESA Earth Sciences Division of the advantages and the easibility of this new measurement technique for space-based observations. The same instrument concept in still successfully used on the MetOp platforms with the Global Ozone Monitoring Experiment-2 (GOME-2), The scientific leadership of Europe for atmospheric chemistry missions was further strengthened with the ENVIronmental SATellite (ENVISAT) mission launched in 2002 and successfully operated until 2012 , providing four years overlap with UARS.

The integration of GOME on the ERS-2 mission was also very inportant to demonstrate the new capabilities of the DOAS technique for the monitoring of the tropospheric composition, in particular of key anthropogenic pollutants such as nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and formaldehyde (HCHO) as a proxy for non-methane volatile organic compounds. For the first time also a comprehensive validation programme was nitiated for atmospheric composition products.

Since the early stage of its operation, scientists from BIRA-ASB, involved for many years in UV-visible remote sensing of atmospheric composition and global atmospheric modelling, have provided experimental, aloorithmic and theoretical support to the GOME mission. Ground-based monitoring networks such as the international Network for the Detection of Stratospheric Change (NDSC, now renamed NDACC, see chapter 10) also played a central role in support of GOME and other satellite missions. This included the development o advanced correlative database facilities and validation methodologies, later also exploited in support of the NVISAT mission

GOME was the successful example of a new generation of space-borne sensors deployed during the following decade and beyond: The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartograph
SCIAMACHY on board ENVISAT (2002-20|2), the Ozone Monitoring Instrument (OMI) on board NASA's EOS Aura (2004-...), and the EUMETSAT MetOp GOME-2 series (2006-...). Owing to their early involvemen in the GOME project, and shortly after in the ENVISAT mission (in particular within the Global Ozone Monitoring by Occultation of Stars, GOMOS, and SCIAMACHY teams), scientists of BIRA-IASB developed a strong and internationally recognised expertise allowing them to take important roles e.g. in EUMETSAT and in the various ENVISAT Quality Working Groups, but also in development teams working on the level-2 retrieval algorithms
Coperricus Programme Copernicus. previously known as GMES
Global Monitoring for Environment and Security), is the European Programme fo
the establishment of E European capacity for (from hitp://marncopoesmicus ewn Another essential evolution building on the ENVISAT expertise is the Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere mission (ALTIUS) mission proposed by BIRA-IASB to fill the gap in atmospheric limb sensors. ALTIUS is an innovative spectro-imager capable of measuring atmospheric concentration profiles of trace gases in the upper atmosphere. Presently in development at the Institute, it will be embarked aboard a microsatellite of the PRoject for On Board Autonomy (PROBA) class and will be operated in several observation modes: limb scattering, solar and stellar occultation.
BIRA-ASB is currently involved in the retrieval of vertical profiles of greenhouse gases and of aerosols from the Infrared Atmospheric Sounding Interferometer (IASI) developed by CNES, launched on board MetOp-A and $\mathrm{Me}_{\mathrm{O}} \mathrm{O}_{\mathrm{P}}$ - in 2006 and 2012 respectivel

Remote sensing from an orbiting platform provides unique access to the global mapping of atmospheric constituents. Different observing modes are possible, using absorption or emission signatures of atmospheric constituents in the optical, thermal or millimeter-wave spectral range
Solar or Stellar Occultatio stars when they move in or out of the line
of sight behind a planet with respect to an Occultation measurements observe light sources like the Sun or stars. Solar occultation occurs twice per orbit every 100 min for a Sun-synchronous orbit at 800 km altitude, giving total content along the line of sight at different altitudes.
When scanning the limb,sensors observe only radiation scattered or emitted, providingaltitude profile information while looking at the nadir, sensors observes the radiation emitted, reflected or scattered by the atmosphere and he Earth's surface. The nadir-pointing geometry offers direct insight down into the troposphere. Therefore this is the preferred geometry to measure total column amounts. For some molecules, height-resolved information an also be retrieved from nadir measurements.

Figure $1:$ Gomos star ccultation viewing geometry, also valid for solar occultaito
neeasurements. (credit: SSA)

Figure 2: SCIAMACHY nadir and limb viewing geometry. (credit: ESA)

The solar spectral output monitoring is also continued on the International Space Station (ISS) with an improved Solar Spectrum (SOLSPEC) instrument, a heritage from the experiment already developed at the end of the seventies for the SPACELAB I mission.
haddition to these satellites dedicated to atmospheric studies, scientists at BIRA-ASB are also involved in different missions to detect the particles in space in the vicinity of Earth. It is mainly in the analysis of Van Allen radiation belts measurements that the space physics team of BIRA-IASB made many studies to determin he space weather variations of the fluxes during geomagnetic storms and develop empirical models of space adiations. Among the spacecraft used for these works, the proton fluxes measured by PET (Proton/Electro elescope) on SAMPEX (Solar, Anomalous, and Magnetospheric Particle EXplorer) were analysed in detail, but Oersted, Equator-s, or Combined Release and CRRES (Radiation Effects Satellite) observations were also used among others.

Due to this involvement in space radiation studies, BIRA-ASB participated with UCL, QinetiQ Space and with the support of ESA to the development of a new instrument to detect the fluxes of energetic partices in spade wien steps of the instrument development: the scientific requirements, the mechanical aspects for the building of the instrument (engineering team), the data transmission and satellite operations (B.USOC, see Chapter 16) after the launch on the PROBA-V satellite on 7 May 2013 , and presently the scientific analysis of the data (space physics team).

Also other regions of the magnetosphere are studied at BIRA-ASB. This started with detailed studies of Active Magnetospheric Particle Tracer Explorers (AMPTE-RMM) and WIND data, but culminated in a strong involvement in the observations of the Cluster satellites launched in 2000 and flying in formation on a polar elliptical orbit Cluster, an ESA cornerstone mission, is composed of four identical spacecraft that are determining the physica processes involved in the interaction between the solar wind and the magnetosphere in key plasma regions. Such a multi-spacecraft mission required the development of new data interpretation techniques. BIRA-ASB is Co-Investigator of the instrument WHISPER (Waves of Hogh frequency and Sounder for Probing of Electron density by Relaxation experiment) to determine the density of electrons. These data have been used to study the plasmasphere and the position of the plasmapause. Comparisons were made with the observations of the NASA satellite IMAGE. In addition, observations of the instruments CIS and RAPID on Cluster were analysed to study the interactions between the low energy particles of the plasmasphere with the energetic particles of the radiation belts. Empirical reconstruction techniques were developed at BRA-ASB to advance our understanding of the Earth's magnetopause and boundary layer. Cluster measurements of the auroral regions have been coordinated with observations on the ground (e.g.t. the EISCAT radar) and with low-altitude satellite data (e.g. from the NASA Defense Meteorological Satellite Program; DMSP). High resolution plasma and magnetic field data are used to study turbulence. The ESA Cluster mission is stil active and continues to produce interesting data. Such long term datasets are very important for space weather prediction.

In the future, BIRA-IASB heads the development of a pico-satelite called PICo-satelite for Atmospheric and Space Science Observations (PICASSO) in the framework of the international network of 50 CubeSats (QB50 project) development in Europe. Its VISION payload will perform remote sensing observations of the upper atmosphere, mainly during solar occultations. There will also be Langmuir probes on board to study ionospheric density and emperature.

IRA-ASB satelite contributions have not been limited to the immediate vicinity of Earth. The Institute was an
 scientific return of planetary missions (see chapter I 3)

THE GLOBAL OZONE MONITORING EXPERIMENT

ean-Christopher Lambert and Paul C. Simon

The Global Ozone Monitoring Experiment (GOME) is an instrument on board the ERS-2 (European Remote Sensing) satellite, the first satellite ever, entirely built and operated by Europe, to monitor ozone and atmospheric composition. Launched by the European Space Agency (ESA) on 21 Aprii 1995 , it was in une 2003. ERS-2 fies in a Sun-synchronous polar orbit with an inclination of 98°, at an altitude of 780 km .This esults in an orbital period of about 100 minutes and 14 orbits per day.The satellite crosses the equator at a ocal time of IOh3O at the day side of the Earth, flying from North to South. The objectives of this nadir-looking V-visible spectrometer covera wide range of scientific fields, going from stratospheric ozone to atmospheric ollution monitoring

The purpose of GOME is to observe the upweling solar raciation reflected or scattered by the Earth's atmosphere and from its surface. The measured spectrum contains absorption features which can be used do derive quantitative information on the presence of ozone and of a number of other atmospheric species. The GOME measurement concept is based on "Differential Optical Absorption Spectroscopy" (DOAS), a

The full width of a normal GOME scanning swath is 960 km , which is divided in three ground pixels (named east, centre or nadir, and west, relative to viewing straight down). The scan measures 40 km in the direction of light.1ts nadir-looking geometry makes it particularly suited for vertical column and tropospheric observations fight. It n nadir-oookng geomery makes it particuarly suried or vervicica column and tropospheric obss
he instrument also measures the solar spectrum directy, The ratio between the Earthshine and solar signal The instrument aso measures the solar spectrum directly, The ratio
sa measure of the reflectivity of the Earth's atmosshere and surface.

The GOME instrument during vibration tests
(credit: SAA
Sun-synchronous or Heliosynchronous Polar Orbit
In Sun-synchronous polar orbit, the satellite is movit In a Sun-synchronous poar orbtit the satellite is movin around Earth from pole to pole, crossing the equato
at ataproximately the same local time each day (an at approximatele
hight)This orbit allows consistent scientific observations
with the angle between the Sun and the afrtis surface

Worldwide map (on the top) and A Arctic and Antaractic
maps of total ozone content on 26 November 1998 Wortawide map (on the topp) and Arctic and Antarctic
mapo fototo ozene cont on 26 November 1998
derived from GoME obsenvations. The Antartic ozone hole is is clearly visible
(credist ESA, EUMMET, CC)

The GOME instrument consists of a UV-visible grating double spectrometer observing the solar irradiance and the solar radiation backscattered from both the atmosphere and the Earth's surface, between 240 and 790 nm with a medium spectral resolution of 0.2 nm in the UV and 0.4 nm in the visible and near IR. It scientific objectives are the measurement of the total ozone column and stratospheric and tropospheric profiles of ozone on a daliy basis.
GOME demonstrated the feasibility of tropospheric trace species observations from space. It is also the first satellite providing global, continuous measurement of nitrogen dioxide (NO_{2}), bromine oxide (BrO)
formaldehyde (HCHO) and sulphur dioxide (SO_{2}) and the measurement of total colmn of $\left(\mathrm{H}_{2} \mathrm{O}\right)$. GOME can also be used to investigate the distribution of atmospheric aerosols, clouds and surface spectral reflectance.
GOME is the successful predecessor of a series of new generation sensors ike SCIAMACHY on board ESA's ENVISAT (operating from 2002 to 2012), OMI on board NASA's EOS Aura, launched in July 200 and operating forr years, and GOME 2 20.

Among major achievements, GOME, followed by SCIAMACHY, have started a
record extending those intiated in the late 1970s byTOMS and SBUV missions.
A wide range of important issues is studied based on the datasets provided by GOME: the trend in the ozone hole and a possible recovery of the ozone layer in the future, the amount and global distribution

ratural emissions (e.g. emissions from soils and vegetation, Ighhtring), trends in ozone in the lower atmosphere elated to these change
Since the early stage of GOME operation, scientists from BIRA-ASB, involved for many years in the UV isible remote sensing of atmospheric composition, have provided experimental and theoretical support to Network for the Detection of Stratospheric Change (NDSC, now NDACC) in support of GOME and other satellite systems has to be highlighted (see chapter 10).

 Continuity of ERS and ENVISAT Missions for earth sciences
and evirionmental montitoring. 130 Chaperer

SCIAMACHY is an imaging spectrometer whose objectives were to perform global measurements of trac gases in the troposphere and in the stratosphere. The solar radiation transmitted, backscattered and reflecte by the atmosphere is recorded at relatively high resolution over the range 240 nm to 1700 nm , and in selected regions between 2000 nm and 2380 nm . SCIAMACHY has three different viewing geometries: nadiri, limb, an
 (in some cases) the troposphere for trace gases, clouds and aerosols Beigum (and in particular BIRA-IASB) contributed to different phases of SCIAMACHY, going from the
development, validation and exploitation of scientific cata products to inustrial knowedege of the instrument itself and with respect to certain data products. The experience gained in GOME and in the scientific preparation for SCIAMACHY provided the basis of the contribution of BRAA-ASB to the international effort to produce SCIAMACHY data products

GOMOS (Global Ozone Monitoring by Occultation of Stars) was proposed by three institutes, namely the Service d'Aéronomie (now LATMOS, "Laboratoire Atmosphères, Milieux, Observations Spatiales") of the
 Advisory Group and were deeply involved in the instrument definition. GOMOS is a medium-resolution Spectrometer, measurng the atmospheric composition by detecting absorption of staright in ultraviolet. visible and near-iffrared wavelenghs

Selected References

THE SCANNING IMAGING ABSORPTION SPECTROMETER FOR ATMOSPHERIC CHARTOGRAPHY: 10 YEAR MEASUREMENTS OF OUR CHANGING ATMOSPHERE

ean-Christopher Lambert

The SCIAMACHY Instrument

The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is a joint project of Germany, the Netherlands and Belgium, with BIRA-ASB as co--Principal Investigator.The instrument is a passive remote sensing spectrometer measuring sunlight backscattered, transmitted and reflected by the Earth's atmosphere and surface in the ultraviolet, visible and near infrared spectral range ($240 \mathrm{~nm}-2380$ nm) at moderate spectral resolution ($0.2 \mathrm{~nm}-1.5 \mathrm{~mm}$). Two key innovations make of SCIAMACHY a unique more atmospheric layers than any other instrument from the lower troposphere through the stratosphere up to the mesosphere), while its extended spectral range offers access to the measurement of a wide variety of trace gases absorting or scattering light.

The Scientific Targets

SCIAMACHY was designed to measure incoming solar radiation and atmospheric radiation, the latter carrying absorption and scattering signatures of various trace gases. These radiation measurements can be inverted
t derive the total column and vertical distribution of key atmossheric constituents in numerous thematic domains such as: stratospheric ozone and UV radiation, greenhouses gases and climate change, reactive gases and air qualty, solar activity and upper atmosphere impacts, volazic eruptions and hazards to aviation, and chemistry and dymamics of the troposshere, stratosphere and mesosphere. Among the targeted atmospheric gases and parameters, BIRA-ASB has contributed to the development, validation and exploitation of ozone O_{3}), nitrogen dioxide (NO$)_{2}$), bromine oxide (Bro), chlorine dioxide (OCIO), formaldehyde (HCHO), glyoxal dioxide $\left(\mathrm{SO}_{2}\right)$. and volcanic ashes

CIAMACHY Ozone and Climate Data Records

From the 1970 s until the late 19995 , due to enhanced stratospheric concentrations of manmade halogens,
continuous decrease of up to 3 3.6 per decade in the total ozone abundance had been observed over continuous decrease of up to $3-6 \%$ per decade in the total ozone abundance had been observed over the middle and polar latitudes. The discovery in the mid 1980s of a massive loss of stratospheric ozone over Antartica every springtime, known as the ozone "hole", led to the Montreal Protocol, agreed on 16
September I 1987 and entered into force on I Ianuary 1989 to reduce the production and consumption

The 1% agreement of ozone column data measured over
1996-2012 by 3 consecutive EUuropean satelitits (GOME,
SCill SCIAMMCCY, and 6 OME-2) and 8 stations of the Brever

132 chaper 8
of ozone-depleting substances, and thereby protect the Earth's fragile ozone ayer. Durng its ten years controlling role of NO_{2} and the wintertime conversion of inert halogen reservoirs into ozone depleting forms of chlorine and bromine and their Products (Bro, CIO, OCIO). SCIAMACHY has aso measurred the SCIMMACHY springtime polar orone deletetion and the evolution of species impacting stratospheric chemistry in order to detect possible signs of recovery, and to better identify and understand interactions between climate change (e.g, cooling of the stratosphere and strengthening of the Brewer-Dobson circulation) and the expected recovery of the ozone layer.

Monitoring Air Quality and Natural Hazards with SCIAMACHY

With the steady increase of anthropogenic emissions over the last decades, air quality and atmossheric pollutio have become a maior concern. SCIAMACHY has measured at unprecedented resolution, and often for the also by natural sources Iike lightning, natural biomass burning, microbiological a ativity and volcanic eruutions From SCIAMACHY spectra, BIRA-ASB has generated global data sets to study emissions and transport of NO_{2}, SO_{2}, Bro, OClO, CHOCHO , and HCHO . Figure on the top shows the mean distribution of sulfur dioxide over China, produced by combustion of coal and fossil fuels. The combination of SCIAMACHY data with those from GOME (1995-2003) and GOME-2 (rrom 2006 onwards) enables the assessment of sources ransport, sinks and trends of manmade pollutants, and of the impact of environmental regulations over the addition to SO_{2} and ashes volcanoes release large amounts of halogen species such as HCl and HB r which can be converted into reactive halogens by heterogeneous photochemical reactions that are currenty not fully characterize. Satellite measurements by SCIAMACHY were the first to detect volcanic OCIO in addition to Bro, suggesting that OClO is formed in the plume by the CIO +BrO reaction in presence of a large excess of CIO (see also chapter 14)

Didier Fussen, FilipVanhellemont and Cédric Tétard

GIobal Ozone Monitoring by Occultation of Stars (GOMOS) is s spectrometer on board the ESA's ENVISAT satellite. It is the first space instrument that uses the stellar occultation measurement principle for monitoring pzone and other trace gases in the Earth's stratosphere.The part of the electromagnetic spectrum covered by the instrument is the ultraviole and visible ($250-675 \mathrm{~nm}$) and the near infrared (two channels at $756-773 \mathrm{~nm}$ and temperature. The two \mathbb{R} channels, on the other hand, allow measurements of O_{2} and $\mathrm{H}_{2} \mathrm{O}$. Two fast photometers (frequency of $\mathrm{I} \mathrm{K} H z \mathrm{z}$, , working in the blue $(473-527 \mathrm{~nm})$ and red $(646-698 \mathrm{~nm})$ spectral domain are used to demodulate the star scintillation and to determine high vertical resolution temperature profiles.
Measurements cover the entire vertical range between 5 and 150 km . Atmospheric data are obtained in the ange $15-100 \mathrm{~km}$ for ozone, while other constituents have more restricted vertical coverage
Depending on the time of year, there are 150 to 300 stars that are bright enough for GOMOS to track and me windows often overlap the instrument at specific times during an orbit. Since the actual occultation

Uutaway view of the Gomos

BIRA-ASB was selected by ESA as one of the three Expert Support Laboratories for the GOMOS mission in collaboration with LATMOS (France) and FMI (Finland).This implies an extended knowledge of the instrumen
of the observation method and of the complicated inversion algorithm.The GOMOS proposal was intitated of the observation method and of the complicated inversion algorithm. The GOMOS proposal was intiated
in 1988 and ENVISAT was launched in 2002. Athough the satelite stopped working in Spring 2012 , the data processing is still improving and will take several years for a complete analysis.

In particular. BIRA-ASB has obtained spectacular results with the measurements of strato
the mesospheric sodium layer and the climatology of OcIO in the upper stratosphere.
The current GOMOS operational aerosol/cloud product consists of optical extinction profiles at 500 nm and additional spectral coefficients to evaluate the extinction at other wavelengths as well.The quality of the product is not optimal yet, due to an unfortunate spectral aw implementation, combined with an altitude smoothing that is too strong. Furthermore, profiles derived from bright limb measurements are currently not Usable. Nevertheless, if we restrict ourselves to the use of 500 nm extinction profiles retrieved from dark limb measurements, than the quality can be considered as good, atthough fine structure has been smoothed A comparison with SAGE II, SAGE III and POAM III showed a good agreement within 20% in the upper ropospherellower stratosphere, from 10 km to about 25 km .

Thanks to special statistical techniques, our team was able to detect and measure the concentration profiles of the mesospheric sodium layer, of which the first global climatology has been published in 2012 .The principa result of this climatology is the discovery of a double pattern for the mesospheric sodium latitudinal and temporal distribution, i.e. a semi-annual equatorial oscillation that merges into an annual polar oscillation This was unreported so far in the literature and this pattern turns out to be quite similar to the ozone distribution measurea by GOMOS. The important subsidence observed during polar winter, was also show demonstrating the accepted view of the general mesospheric circulation driven by the seasonal gravity wa break-up.

Thanks to the use of the same signal virtualization technique, we have also been able to discover the presence of an equatorial OCIO layer that was unreported. A validated climatology of this important chemical constituent has been published in 2013 .

So far: BIRA-ASB has been involved in 31 publications about GOMOS in peerreveiewed international journals awarding more than 15 years of efforts.
Unfortunately the end of ENVISAT mission induced a break in the continuity of the measurement of atmospheric profiles with a high vertical resolution.

Gomos sodium climatology: notice th
the annual cycle in the Polar Regions.

elected References

Oclio limatology produced by 6 OMOS data, confirming our
discover of an Occi layer in the equatoriail mid-stratosphere.

(credits: ESA, EUMEISAA, CCI)

Michel Van Roozendae
 With contributions from Isabelle De Smedt, Christophe Lerot, Gaia Pinardi and

 Nicolas TheysLaunched in October 2006 on board the MetOp-A platorm, the Global Ozone Monitoring Experiment-2
(GOME-2) continues the (COME-2) continues the long.term monitoring of atmospheric trace gases started by ERS-2 COME in $19 n 5$ for operation until 2020 , fies on a Sun-synchronous polar orbit crossing the equato at $09: 30$ local time. consists of a nadir-scanning UV-visible spectrometer covering the spectral range from 240 and 790 nm in four Earth coverage within 1.5 days at the equator with a nominal ground pixel size of $80 \times 40 \mathrm{~km}^{2}$.

GOME-2 measures the solar radiation backscattered by the atmosphere and reflected from the earth surface to infer, by means of the DOAS method, global maps of atmospheric ozone $\left(\mathrm{O}_{3}\right)$ as well as a number of ke) atmospheric trace gases such as itrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulphur dioxide (SO_{2}) and formaldehyde (HCHO .
It also provides useful information on aerosols, clouds and surface ultraviolet radiation.

BIRA-ASB has been involved in the exploitation of GOME-2 measurements since the start of the mission in 2006. Ongoing activities include the development of state-of:the-art retrieval algorithms for different species such as $\mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{HCHO}$, gyyoxal and BrO as well as an important contribution to the calibration validation programme of MetOp. The latter releies on ground-based instruments operated by BIRA-ASB and deployed in intermational networks such as the Network for the Detection of Atmossheric Composition Changes (NDACC). The institute is a key partner of the EUMETSAT Satellite Application Facility on Ozone Monitoring (O_{3} MSAF) where it provides support to the development and continuous operational processing number of research projects exploliting GOME-2 data.

One key achievement of the team has been to provide the baseline agorithm used for operational processing of total ozone from the series of European sensors GOME,SCIAMACHY,GOME-2, and OMI. In this contex BIRA-ASB coordinates research activities related to the ozone climate data record developed as part of the
ESA Climate Change Intititive programme (the Ozone CCI project).

Another important focus is the study of the tropospheric composition in support of air qualty studies, e.,.in . where the strong and rapid growth of the economy and industriaization has been the source of majo changes recently. Based on high-uality data products generated from multiple sensors including GOME-2, data sets of formaldehyde., Iyoxal. SO_{2} and NO_{2} columns are used in many proiects, eg. . in support of of inverse data sets of formaldehyde, gyoxal. SO_{2} and NO_{2} columns are used in many projects, e.g. in support of inverse
modelling studies of emissions, which represent a key input for the modelling of global and regional air quality.

GOME-2 also addresses the study of volcanic emissions. Satellite measurements by GOME-2 were even the frst to detect volanic Bro. On this topic, our interest extends from research to scientific service activities which are developed within SACS, the Support to Aviation Control Service (see chapter 14). SACS aims at making optimal use of current satellite sensors to detect and inform in near real-time on volcanic ash and SO_{2} emissions. Main users are Volcanic Ash Advisory Centers (VAACs) which are responsible for coordinating and disseminating information on atmossheric vol canic ash clouds that may endanger aviation

Until now, the GOME-2 team at BRAA-ASB has published about 15 papers in peer-reviewed international journals. The expertise demonstrated on the exploitation of GOME-2 and similar precursor instruments wil be further developed in the future through our involvement in the ESAAEUMETSAT Sentinel programme, more specifically Sentinel-5 Precursor which is planned for launch in early 2016

elected References

 10.2059-200.

Long.term average ofthe global formaldehyde (HCHO) column
derived at BIIPAAASB using the
o are relatee to to bioisenicic and and antroposegenic emisisions of of non-

 emission in this tegion of the world are mostly due to the
busning of coal in oover lants and ind usty.

WMO/GAW
is a parthership invelving the Members of of MO. contribututing is a partuership involving the Members ofw MO, contributing
netrorksnd collaborating orgaization and bodies which
provides reliable scientific cata and information on the chemical
 interactions between the atmosphere, the oceans sand the
biosshere. AWW focal reas are earosos. greenhouse gases,
selected reactive gases, ozone, UV radiation and precipitation selected reactive gases, ozone, UV radiation and precipitation
chemistry (or atmospheric depostion). (Source:WMO)

THE INFRARED ATMOSPHERIC SOUNDING INTERFEROMETER

Sophie Vandenbussche and Evelyn De Wachter
The Infrared Atmospheric Sounding Interferometer (IASI) has been developed by CNES in cooperation witt
the European Organisation for the Explotataion of Meteorological Satellite (EUMETSAT) This instrument flying on board the MetOp-A and B satellite platforms since October 2006 and September 2012 respectivel on Sun-synchronous polar orbits (about 800 km alitude) crosing the equator at about 9 h 30 and 10 h 20
respectively local solar time. AS I is a Fourier Transform Spectrometer Michelson Interferometer) pointing at respectively, IOcal solar time. 1 AS 5 is a Forrier Transform Spectrometer (Michelson Interferometer) pointing at the Earth's nadir and measuring in a large spectral range ($3.7-15.5$ um) the thermal radiation emitted by the
Earth and its atmosshere, and part of the Earth reflection of the solar infrared radiation reflected by the Earth This type of instrument allows obtaining data during both day and night, which is a non-negligible advantage in terms of time coverage. This, together with the wide ground coverage of measurements for each orbit, allows to obtain almost global Earth coverage twice a day with each IASI instrument.
IASI has been designed for operational meteorological soundings (temperature and humidity vertical profiles with vertical resolution of 1 km) with a very high level of accuracy (1 K and 10% respectively) to serve as initial state in weather forecast modeds. The accuracy of forecasts highly depends on the accuracy of the initia range (3 to 10 day forecasts).As ASI I data are used operationally in most weather forecast centres worldwide, in both global and fine-scale models, its impact on the forecast quality is the greatest of all weather forecasting instruments currently used.
|ASI is also designed for atmospheric chemistry aiming at estimating and monitoring trace gases on a globa scale. Its excellent radiometric performance can be used to obtain the vertical composition or the integrated column of some 20 trace gases, in particular Ozone and carbon monoxide. In addtion, species that wer therefore be used to detect certain events such as biomass burning plumes.
|ASI spectra are also used to retrieve information on atmospheric aerosols (mainly desert dust, volcanic as ice clouds), which was not forseen at the time of conception.

ASI instruments are extremely good candidates for long-term and climate studies, providing continuous data records for probably more than twenty years the currently flying instruments are expected to provide
together more than 14 years of thermal infrared radiance, and will be followed by a third identical instrument in
$2016-2017$ and new generation instruments with enhanced properties (better signal-to-noise ratio and better ability, This allows long onverm monitoring of everys) ithing that misht be rextrieved from IASI measurements, ie. temperature, humidity, trace gases, louds, aerososls, surface properties

The interest of the scientific community in the use and application of IASI spectra is still growing, with a lot of ongoing research in all area described above: further improvements of the temperature and water vapour vericial profiles (especially in cloudy conditions and above continental surfaces), improvements in the curren tace gas retrievals and development of retrieval strategies for new species including aerosols, explotation of nergies with other instruments,

At BIRA-ASB we focus on two applications: the retrieval of vertical profiles of greenhouse gases (in particular nethane, CH_{4} and nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$) and of arososos (mainly dust and ash) in the troposphere (see chapter 12). Methane, being the second most important long-lived greenhouse gas, is produced at the surface by both processes. It has a long lifetime of about I 10 years. The atest greenhouse gas bulletin (November 2013) of en World Meteorological Organisation (WMO) Global Atmoshere Watch (GAW) programe yobally averaged CH_{4} concentrations in 2012 equivalent to $\sim 260 \%$ of pre-industrial (before 1750) leves 819 ± 1 pob versus pre-industrial values of $\sim 700 \mathrm{ppb}$). Despite the recognized importance of an accurate understanding of the CH_{4} budget, there are still gaps in our knowedge of its sources and sinks.
The BRRA-ASB team works on the delivery of scientific data products of CH_{4} from the ASI instrument, with a special focus on improving the sensitivity of the retrieval in the lowermost layers of the atmosphere, as close as possible to the associated sources of CH_{4}. Future work will include the retrieval of nitrous oxide from ASS spectra and the retrieval of methane from spectral data from the apanese "Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer" (TANSO--TS) instrument on board the

Selected References

IASI ground coverage of measurements. (credit: CNES)

Yyical methane profile
etrieved from AAS spectra

derieved fiom 1 ASt spectia cror (dashed blue lines
compared to a ircraft data

Websites
IASI Official Website:
httpi//smsc.cnes.f.il AS
WMO Greenhouse Gas Bulletir

WHISPER

Spatio-Temporal Analysis of field fuctuation experiment. A.
Sper on

 140 chapter 8

MULTI-SPACECRAFT EXPLORATION OF THE MAGNETOSPHERE WITH CLUSTER

Johan De Keyser

Magnetospheric plasmas are very tenuous, so that they are hard to image with remote sensing instruments
Also the fields cannot be emotely detected.Therefore one has to rely on in situ measurements The difficulty
is that s spacecraft measures a cuantity at one point in space and ata specific time.f fone observes varaitions of is that s spacecraft measures a quantity at one point in space and ata specific time. If fone observes variations of that quantity, it s never clear whether this is due to spatial structure or due to time variations.To disambiguate
between these different interpretations, it is essential to measure the same quantity simutaneously at fou non-coplanar points. This is the basic idea behind ESA's Cluster mission: a constellation of four identica non-coppanar points. This ir the basic idea benind ESA's Cluster mission: a constelation of four identica
spaceraft. The idea was frst proposed in 1982. In 1996, Cluster was ready to be launched on the maide flight of the Ariane 5 booster: Unfortunately, the launcher filied and broke up after initiation of the automatic destruct system. Because of its scientific importance, Cluster had been considered to be a cormerstone of ESA's science programme. There was a strong determination to rebuild the mission. It was launched two at a time on two successive Soyuz launches in 2000. The four-point measurements have already yelded new insights into space plasma processes in the magnetosphere.

BRAA-ASB has not contributed to the construction of the spacecraft or the payloads, but it was involved int scientific teams from the start, in particular with a Co-Investigatorship in the WHISPER and STAF experiments. Because the Institute was not so much associated with a specific instrument, the research has
often be directed towards interdiscipinary work, combining data from various instruments.
The Institute has done a lot of work on the development of multi-spacecratt data interpretation techniques A first such interpretation technique is the so-called empirical reconstruction technique for examining the structure of the magnetopause and low-latitude boundary layer.We started developing this technique before the Cluster era, with data from the single-spacecraft AMPTEIRM mission, but its potential is much bigger wit multispaceccrat data. Empirical reconstruction assumes that the magnetopause has a fxeed structure but is moving al the time: the motion and the prosles ofdensty,temperature, magnetic fird, etc. are determined by
trying to match the observations. This has siven some insights on the structure of the low-atitude boundary layer. This reconstruction technique has been extended to 2 -dimensional structures. In particular, it has become possible to obtain the geometry of periodic surface waves on the magnetopause.

Another technique invented at BIRA-IASB is least-squares gradient computation (LSGC). The technique seneralises the standard Cluster gradient tool, which simply estimates the gradients from differencing four

At of Cluster work has focused on the plasmashere a research domin in which BRPA-ASB historicaly has been very active. On the one hand, there is the more observational work, which has had to rely on the WHISPER data to obtain correct density measurements of the plasmaspheric density (because the plasma is too cold, the mass spectrometers are of little use here). Various structures in the plasmasshere (such as plasmaspheric plumes) have been examined in detail by using the Cluster gradient tool. On the other hand we have built a semi-empirical plasmasphere model to explain the Cluster observations. Fortunately, NASA's MAGE mission provided global data on the plasmasshere (mainly it EUV imager) that nicely complemented edited by BIRA-ASB scientists.

Auroral studies form a major part of the Cluster research. Cluster offers unparalleled opportunities for sudying the high-altitude structures that are believed to be the generators of aurora. Such structures can be Often modelled as tangential discontinuities. The BIRA-ASB team has a strong heritage in studying tangential discontinutites (dating back to studies of magnetopause structure with ISEE, and of solar wind discontriutites
with Ulysses).The Cluster observations can thus be consistenty interpeted. In addition, the team has worked on models of the auroral current circuit, which relate what happens at Cluster to the appearance of aurora in the ionosphere.The team has used data from low-alitiude spacecratt (e.g.DMSP) and ground-based data (EISCAT radar,ALSS auroral camera network) to verify the correctness of such models.
Cluster has considerably increased our insight in how the magnetosphere work. The overall picture of mass transport in the magnetosphere begins to form. Our studies of the magnetospheric boundary indicate source of plasma from the solar wind. Precipitating particles in aurora bring matter into the atmosphere. Solar in particular by using O^{+}as a tracer. Plasmaspheric plasma intermittenty gets lost in the course of a substorm, while Plasma sheet plasma is recirculated back. Cluster helps us to find several pieces of this mass transport puzze.

Selected References

angeo-23-1355-2005

The solar spectrum experiment
ON BOARD THE INTERNATIONAL SPACE STATION

David Bolsée and William Peetermans

The seventies were marked by the first solar irradiance measurements above the atmosphere. As developed h chapter 7 , the Solar Spectrum (SOLSPEC) instrument contributed to these objectives with a series of short erm missions on board the space shuttles SPACELAB1, ATLAS 1,2 and 3 for the measurement of ultraviolet and visible parts of the solar spectrum and one middle term mission on the satellite EURECA. The near environment for the hardware. Atter two decades of international collaborations, measurement campaigns and comparisons of quite accurate results from different instruments, the solar irradiance variability has been quantified. The data revealed different changes in terms of time scale and wavelength.

Actuall, for modelling purposes of solar physics, limatology and atmospheric sciences, a new need for more accurate measurements over the whole solar spectrum popped up. This is a key input for these models since atmospheric processes such as photodissociation, ionisation, and absorption are wavelength dependent. An Opportunty for a long term flight on the International Space Station (ISS), covering solar cycle \#24 (the
SOLAR mission) meant the start of a third life for SOLSPEC. SOLAR SOLSPEC is an updated version of an older instrument that a aready participated 5 times in space missions over the past 30 years (see chapter 7). It first concept was developed at the end of the seventies.

The main purposs mission, were:

nission, were:

- oupdate the optics and electronics,
-to adapt the mechanical interface to the new requirements
-to develop a reliable in-fight calibration procedure for maintaining the ability to detect short and long term varibility of solar irradiance, and
to perform efficient pre-filigt absolute calibrations
h collaboration with LATMOS, a robust SOLAR SOLSPEC instrument was developed, with renewed electronics, especially for the infrared channel which was largely improved, a new software for the acquistion, novations and new technologies for the internal calibration lamps and filters. A new solar pointer was also and the radiometric characteristion of the new instrument. The accurate absolute calibration in front of

UVSolar spectral irradiance measured for quiet sun condition between
the solar cycles 23 and 24 by the experiment 50 SAR Solspec (in green).

primary standard of spectral irradiance was performed with a new partner, the Physikalisch-Technische Bundesanstalt (PTB, Germany), providing a black body 10 times more stable than in the past.
Finally, the delivered instrument had many improvements: extended operational spectral ranges (now from 16 to 3088 nm$)$) a better spectral resolution and a better absolute calibration. SOLAR SOLSPEC was launched On 7 february 2008. The solar spectral irradiance has currenty been measured for 6 years, wth an uncertanty
limited to 1% between 500 nm and $1900 \mathrm{~mm},<2 \%$ if the range 370 nm to 2350 nm is considered, \mathbf{l} around 4 $\%$ below 370 nm and from 2 to 10% above 2350 nm , for the end of the \mathbb{R} channel. It confirmed the nomina operations of the new, well-calibrated UV channel from which the solar UV variability is actually extracted For the NR (near infrared) irradiance, SOLAR SOLSPEC is the only instrument able to measure in absolute radiometric unit above 2400 nm . Unusual NIR results obtained from the ISS SOLSPEC instrument were found in son the data accuired in orb. The mission is currently extended until end of 201 .

 the Intepean Columbus module of
(rededit: ESO NASASA)

Selected Reference

HEATMOSPHERIC CHEMISTRY EXPERIMENT

Martine De Maziere and Didier Fussen

With contributions from Jean-Christopher Lambert, François Hendrick and Filip Vanhellemont

The Atmospheric Chemistry Experiment (ACE) is a satellite mission designed to investigate chemical and dynamical processes in our atmosphere, with a particular emphasis on ozone depletion in the Arctic stratosphere. ACE was launched on August 12,2003 , on board of the Canadian satellite SCISAT- 1 into a 74° nclination orbit. This orbit inclination is the best compromise to achieve numerous types of measurements. global coverage, as well as high hattude coverage. SCISAT-I was orrignaly designed for 2 2-year mission but
has now surpassed expectations and continues to record measurements of the Earth's atmosphere. In 2013 , SCISATI I celebrated its IOth anniversary in orbit.To commemorate this special occasion, a tenth anniversary book has been published entitled The Atmossheric Chemistry Experiment ACE at IO:A Solar Occultation Anthology.
The scientific payload of ACE consists of two main instruments: ACE-FTS and MAESTRO. Both instruments re designed to measure the vertical and geographical distribution of dozens of chemicals interacting with the ozone layer and with climate change.

ACE-FTS, the prime scientific instrument on SCISAT-1, is a high spectral resolution $\left(0.02 \mathrm{~cm}^{1}\right)$ Fourier Iransform Spectrometer ((FT). This FTS is based on a Michelson interferometer operating from 2.2 to 13.3 um, that was custom designed and built by ABB-Bomem in Quebec City. Belgium contributed to the ACE-FTS instrument with two fitered imagers at 0.525 and 1.02 um, chosen such that they match two of the wavelengths monitored by the SAGE Il occultation radiometer. The imagers provide an important calibration re fitered CMOS arrays, binned into 128×128 active pixels, designed and built by Fill Factory in Mechelen, Belgium.
MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is a small spectrophotometer designed and buit in a partnership among the Meteorological Service of Canada (MSC), the University of Toronto, and EMS Technologies in Ottawa. The instrument consists of two spectrographs (280-550 $\mathrm{nm}, 500-1030 \mathrm{~nm}$) to reduce stray) Ight and to enable simutaneous
measurements of the two bands with a spectral resolution of $1-2 \mathrm{~mm}$.

Functioning Principles
Thetic energy is on the folowing principles: a charged particle penetrates deeper in a material when its electron a p pry is very high. Moreover: the penetration depth also depends on the nature of this projectile: an electron, a proton and an alpha particle with the same energy will penetrate with decreasing depths in a given a given particle, the measurement of the penetration distance in the absortion material gives an indication an the intial energy of this particle.

Telescope

The EPT instrument includes a low energy section, consisting of two silicon detectors placed at the instrument entrance, and a high energy section, composed of 10 so-called Digital and Absorber Modules (DAM), each of these comprising an absorber material and a silicon sensor. A fully operational EPT has the size of a small shoe box, weighs afew kg and requires 4 W of electric energ

The measurement of the penetration distance is obtained by counting the number of detectors that gave a signal or more precisely by registering the so-produced binary number. We then know that the energy of the particle is included in a specific energy range called channel.
The electronic treatment of the signal on board the satellite is then simply to register the number of hit energy y is known by the calibrations realized with particicl accelerators on the ground before the launch.

Conclusion and Perspectives
The EPT instrument measures the high energy fluxes of 0.2-10 MeV electrons, 4-300 MeV protons and $10-1000 \mathrm{MeV} \mathrm{He}$ ions in the space radiation belts. It measures the energy deposited by charged particles into modular sensitive elements placed in series and provides the high-energy particle fluxes with very good energy, angular and mass resolutions. These characteristics allow us to improve our analyses of spectra in the South Atlantic Anomaly and at high latitudes, with high flux increases during Solar Energetic Particle events Due to the widely varying fuuxes of e electrons, protons and heavy ions within the radiation bets, the instrument has a stunning in-fight particle discrimination capability that provides more precise measurements than those made by previous detectors. The energ ranges, size and mass of the instrument can be moduated depending on the orbit of the future missions. An instrument based on the EPT-technologies to detect the angula direction of electrons (called 3DEES) is also in development

elected Reference

Electron fux measured by the EPT instument at an
altituc of 820 km in the eneresy range 500 to 600 keV

 Anomaly as wel
ath
igh hatudes.

Website
EPT:
htppi/leptaeronomie.be UPCOMING STRATOSPHERE M
OF THE EARTH ATMOSPHERE

Didier Fussen Emmanuel Dekemper, Didier Peroux and Fili Vanhellemont

 With contributions from Nina MateshviliIt is now accepted that the global and polar depletions of the ozone layer can be attributed to the presence of halogen compounds released by anthropogenic emissions. The Montreal protocol has allowed observing a decrease in the stratospheric halogen load and a slowing of ozone decline is expected to be the natural precursor of a complete ozone recovery around the mid-century. There is presently experimental evidence that the global mean ozone total column is no longer decreasing with respect to the 1998 -2001 period
Also, the ozone stratospheric distribution has been relatively constant during the last decade although both dynamical and chemical processes may contribute to decaadal changes in the lower stratossphere. On the other hand, column ozone loss in the 2010/20| I Arctic winter was among the largest ever observed whereas Antartic ozone depletion has probably stabilized during the last decade.
Clearly the monitoring of ozone stratospheric abuncancesi so frucial importance in assessing the milestones of a clear recovery process.
Among important trace gases, methane is very important for its impact on climate through alarge radiative forcing effect and the production of stratospheric water vapor. A global increase of about 0.7 ppm in 1800 AD to 1.8 ppm nowadays is difificut to interpret because of the diversity of the sources: wetands, enteric fermentation, fres and rice agriculture.
Similarly, the NO_{x} family is known to play an essential catalytic role in ozone destruction with a strong diurna cycle that requires day- and nightime measurements for a full characterization. On the other hand, thess ClONO_{2} and the measurement of OClO (depending itself from the presence of ClO and BrO) and BrO (daytime) in the UV is very important fifit can be anti-correlated with NO_{2} simultaneous observations. It is highly desirable to combine the advantages of nadir-viewing and limb-viewing techniques. What is ideally needed is an instrument with a vertical sampling similiar to that of an occultation instrument but with coverage similar to that of a backscatter instrument. This is the framework of the ALTUUS mission (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) as proposed by the Belgian Institute for Space Aeronomy: a Belgian spaceborne instrument for the remote sensing of ozone and other important trace gases. ALTUS will make use of the limb scattering technique but its inaging capacity will allow for solving the issues of altitude registration, cloud identification and horizontal gradients of measured species.

The Atmospheric Limb Tracker for the Investigation of the upcoming Stratosphere mission (ALTUS)

 dission wilf be dedicated to the measurement of the vertical distribution of key atmospheric trace gases. The primary target is ozone, but secondary objectives are NO_{2}, methane, water vapor, aerosols, Bro, etc... The sounding altitude range will be mainly from clouds top up to 100 km , ie. from the troposphere to the mesosphere. It will be placed on a sun-synchronous polar orbit 650 km above the ground, ensuring a constan Sun-Earth-spacecraftangle corresponding to a 10 H3 30 AM local time. One orbit will last for 100 minutes and ee gooal coverage of the Earcth wil be reached after three days. The mission lifetime will be at least three e most innovativecuutatid that ins is its capacity to perform mutimode observations: limb scatterng ALLTUS will be embarked on a PROBA platform, a microsatellite class developed for ESA by QinetiQ Space in Antwerp (Belgium), which has demonstrated its capabilities with aready two successsul missions (PROBA-I 2001 and PROBA-2 in 2009). This mircosatellite (about $1 \mathrm{~m}^{3}$ and 150 kg) shows excellent performances in terms of pointing stability (10 arcsec over 10 sec thanks to its miniaturized reaction wheels),

Atist view of ALTUS on board of the PROBA platorm,
tist vew of AtIU on board

The instrumental concept of ALTUUS has been driven by the mission requirements and the platform accommodation constraints. II consists of three independent channels, each of them operatitn in a specific
spectral interval: 250 to 450 nm (UV), 450 to 900 nm (visible) and 900 to 1800 nm (near-infrared). Eac channel contains a set of mirrors responsible for directing the incoming light into the AOTF (Acousto-Optic Tunable Filter), then relaying the selected spectral content to the detector. The three channels are almost aperture had to be foreseen next to the bright limb aperture, whereas in the two other channels, the three observation geometries use the same entrance hole. In the neariffrared, the detector will be cooled by rotating Stiring cooler in order to reduce thermal noise. The optical design and most of the technical studies were performed by "Optique et nstruments de Précision" (OIP) in Oudenaarde.

Summar

ALTUS is a limb sounder spectrometer, capable of a 1 km vertical resolution. It consists of one or severa spectral camera's (optics+AOTF+2-D imager) in the UV-visible-Near IR range. The instrument, on board heliosynchronous microsatellite, can be operated in iffferent viewing modes (limb, solar occultation, stelia occulation) and/or scenarios by the scientific user: It is optimized for on board signal processing (nnctudn minor trace gases $\left(\mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BrO}\right.$, erosos ${ }^{2}$. inversion algorithm and associated computing power.
ALTIUS will be the first Belgian atmospheric mission for the sounding of the upper atmosphere. Being fully integrated mission, it represents an exciting challenge for BIRA-ASB. The main objectives are to provide stratospheric measurrements to monitor global changes and to meet the need for (in particular European) instruments capable vertical remote sounding of the atmosphere. With the development of ALTUUS, new and the data and to promote the ALTUS concepts, from a scientific level to an operational capacity.

THe PICOSATELLITE FOR ATMOSPHERIC AND SPACE SCIENCE OBSERVATIONS MISSION:TOWARD GEOPHYSICAL
MEASUREMENTS FROM MINIATURIZED SPACE SENSORS

Didier Fussen, Didier Peroux Sylvain Ranvier and Johan De Keyser With contributions from Pepiin Cardoen, Jurgen Vanhamel, Emmanuel Dekemper, Herve Lamy, Ozgur

The QB50 flight opportunity

The objective of the QB50 project is to deploy 50 CubeSats built by university teams and research institutes originating from all over the world to explore the lower thermosphere and to study the atmossheric re-entry ocess. The main launch is forseen at the end of 2015 .
QB5O is driven by an international consortium under the leadership of the von Karman Institute (Sint-Genesius-Rode, Belgum). It has been granted the financial support of the 7 European Commission Framework Programme (FP7).

PICosatellite for Atmospheric and Space Science Observations (PICASSO) is a joint project led by the Belgian Institute for Space Aeronomy (BIRA-ASB) in collaboration with the Royal Observatory of Belgium. A triple-unit CubeSat targeting the precursor filight will be developed to embark two scientific experiments dedicated to the study of the ozone distribution in the stratosshere,
profie up to the mesosphere, and the electron density and temperature in the ionosphere.
For the sake of illustration, the figures hereby display one of the possible configurations for PICASSO.The Cubesat is equipped with four deployable solar panels always facing the Sun. Extra body-mounted panels ensure the powering of the spacecraft in case of off-nominal orientation. The payload is located in the cube facing the Sun.
hummary, to achieve the objective of being a demonstrator of the use of picosatellites for scientific CASSO will embark two experiments
VISION, a visible and near-infrared hyper-spectral image
SLP, a Sweeping Langmuir Probe;

The PlCASSO cubesat m.
of the eubism art style.

The VIsible Spectral Imager for Occultation and Nightglow (VISION) is a tuneable spectral imager active in the visble and near-infrared. It targets primarly the observation of the Earth's atmospheric limb during ortita ozone concentration vertical profile can be retrieved. A secondary objective is to measure the deformatio ferave ral
in the atmosphere, solar light is refracted and t bends towards the Earth From the imager persediver refraction leads to two phenomena. Firsty the Sun's apparent position is displaced away from the Earth, as the Earth was repelling ti. Secondly, as illustrated in the figure, the apparent shape of the solar disk shrinks along the vertical dimension (relative to the Earth image). This deformation comes from the fact that rays emanating from the bottom of the Sun image propagate into denser atmospheric layers than those emanating from top. By solving the inverse ray-tracing problem of the photon propagation in the atmosphere, mesospheric and stratospheric temperature profiles can be retrieved

PICASSO will aso operate a Sweeping Langmuir Probe (SLP) instrument for electronic denstites and temperature measurements in the upper atmosphere with a particular interest for the polar regions. BIRA-ASSB plans to carry out coordinated ground-based observations with the European Incoherent Scatter (EISCAT) radar experiment located in Troms8 (Norway), as this could strongly enhance the scientific output of the mission.
At 500 km altitude, PICASSO is flying through the upper layers of the ionosphere with an orbital period of 94 minutes. Given its high inclination, PICASSO will sample the ionosphere at this altitude rather globally. It is therefore obvious to use PICASSO as a platform for a global monitoring of the ionosphere. To that end, SS SLP instrument is an upgraded version of the traditional Langmuir probe. It includes four cllindrical probes whose electrical potential is swept in such a way that both electron temperature and density can be derived together with the spacecrat potential with respect to the plasma potential. I In addition, since at least two probes will be out of the spacecraft's wake, differential measurements will be performed in order to increase
the accuracy of the derived parameters.

THE ENDANGERED OZONE LAYER
Paul C. Simon

Guy Brasseur (MPI-M, NCAR) and Paul C. Simon

zone, which protects the biosphere from harmful solar ultraviolet radiation and plays a key role in the radiative budget of the middle atmosphere is present in the atmosphere from the surface to as high as 100 km altitude. oudget of the middle atmosphere, is present in the atmosphere from the surface to as high as 100 km altitude
The peak density of this chemical constituent is located near 25 km altitude in the tropics and 18 km at high atitude. The transmission of solar radiation in the $200-310 \mathrm{~nm}$ wavelength range is determined by the ozone column density, which corresponds, for standard pressure and temperature conditions, to a highly absorbing layer with a thickness of only 2.5 to 4.5 mm (250 to 450 Dobson Unit).

Ozone is produced by the action of solar ultraviolet radiation on molecular oxygen at wavelengths shorter than 242 nm . Its destruction by recombination with atomic oxygen is catalysed by the presence of different radicals belonging to the families of hydrogen $\left(\mathrm{H}, \mathrm{OH}\right.$, and HO_{2}), nitrogen $\left(\mathrm{NO}, \mathrm{NO}_{2}\right)$, chlorine $(\mathrm{Cl}, \mathrm{Cl})$), bromine (B Bro), etc... The relative contribution of these radicals to the ozone loss varies with altitude: in the mesosphere $(50-85 \mathrm{~km})$, the most efficient processes are due to the hydroxy (OH) radicals while in the stratosphere (15 $50 \mathrm{~km})$, the most important destruction agents for ozone are the nitrogen oxides. The effects of chlorine are the largest near 40 km altitude (under conditions prevaling outside the polar regions). In the second half of the eighties, measurements have shown that the chlorine chemistry is substantially modified in the cold stratosphere over Antarctica in Spring.

Climatology of Ozone

Observations of ozone reveal that the mean total ozone content increases with latitude with the most pronounced latitudinal gradient in late winter and early Spring. The spatial distribution is significantly different in the two hemispheres. Ozone, which is produced essentially in the upper stratosphere at mid- and low latitudes,
transported downwards and towards higher lattucdes by the stratospheric meridional circuation, which is particularly strong during winter when planetary waves (which are produced by the wind flow over large during winter and the total column density reaches a maximum value in early spring Because of hemisphes differences in orography, the strength of the planetary waves is weaker in the Southern than in the Northern hemisphere and the meridional flux of ozone and heat significantly lower in the austral than in the boreal region The presence of a strong and undisturbed polar vortex over Antarctica in winter explains the low ozone content and the relatively cold temperature (about 10 K lower than in the Arctic region) at the South Pole as well as th resence of a warm zonal belt near 60 degrees South with high ozone content. This morphology is important for explaining the observed ozone hole over Antartica and shows how dynamics produce the conditions allowing for rapid chemical ozone destruction in this region.

The temporal and geographical variations of ozone are also influenced by meteorological conditions near the ropopause and by oscillations in wind and temperature in the stratosphere. Variations in the solar ultraviolet adiation associated with the 27 -day rotation period of the Sun and its 11 -year cycle affect also ozone concentrations above 30 km altitude (see chapter 3).

Total Ozone Content Monitoring and Trends

 Dobson spectrophotometer but one has to wait until 1957-1958, during the IGY, to see the worldwide ground a difficult to achieve because of the poor geographical coverage of the ground-based instruments. For instance dservations are predominantly concentrated in the mid-latitudes of the Northern hemisphere leading to oversampling with respect to the equatorial zone and the Southern hemisphere. An analysis of the Dobson date shows that, after the effects of the dynamical oscillations and the solar cycle are removed, the residual (negative) trend in total ozone for the 1970-1986 time period is of the order of 2-3 percent at mid- and high latitudes in the Northern hemisphere

Monitoring from space provides very good latitude coverage. Systematic monitoring started in the 1970s with the BUV instrument on board the Nimbus 4 satellite. Nimbus 7 , with the Solar Backscatter Ultraviolet (SBUV spectrometer and the Total Ozone Mapping Spectrometer (TOMS) provided continuous data from the end of

Total ozone climatology as function of latitude Oota ozone climatology sa function of fatitude Irom 1979 to 1992 . (credit NSSA)

Polar vortex
\qquad Dynamica structure of the stratosphere
in olar winter cuased dy the absenco of
sola iluminitation which leads to a cooling over the poles The air within the vorte is relatively Solated in comparison with
surroundings regions. From S . Solomon
 Time series of total ozone column in Dobson
 depletion sta
observed.

2il 1 994. The retrieved quantitative values were, however, subject to controversy because of instrumen degradation in orbit, leading to large uncertainties in the observations. This issue w
'Ozone Trend Panel", coordinated by NASA. The final report was published in 1988
Europe started ozone monitoring from space in 1995 with the Global Ozone Monitoring Experiment (GOME), followed by ENVISAT, OMI and GOME-2 (see chapter 8).

To ensure long-term monitoring and trend quantification, there is a mandatory need for combined and coordinated measurements with complementary sensors on different platforms (ground-based, balloon and aircraft, and space-borne) to provide integrated datasets, complemented with models and assimilation tools to make predictions reliable. The observations must be processed into information accessible to a wide range of users including the scientific community, the environmental organisation, the policy-makers, and to verify the effectiveness of treaties.

The issues encountered with satellite observations initiated the concept of the Network for the detection of Stratospheric Change (NDSC, renamed NDACC in 2006) and, more recently the definition of the Integrated Global Observing Strategy (IGOS).

Considerable effort has been dedicated to instrument intercomparison campaigns and to satellite validation activities in order to improve the consistency among the various measurements. More and more sophisticated nstruments and techniques for ground-, space-based and/or for in situ use have been developed and together With the advances in numerical compilation facilities, have broadened the potential to study, monitor and model atmospheric variables on a global scale. Today the networks not only support research related to the Earth's System and its expected evolution, but also allow scientific assessments on global change, e.g. the UNEPMMO Scientific Assessment of Ozone Depletion and the IPCC Assessment Report on Climate Change, and subsequent summaries and guidance for international policymaking.
ncreases in the atmospheric concentration of methane, nitrous oxide and the chlorofluorocarbons (CFCs) are modifying the density of the active radicals affecting the ozone budget inducing worldwide negative trends in ozone concentration.

UV-B (290-315 nm) and UV-C (200-290 nm) radiation. Abiotic ultraviolet raciation is strongly absorbed by the DNA molecules of living cells and alters reproductive processes of these cells. A well-known example is the relation between UV-B exposure and human skin cancer athough other biological effects could lead to even more important consequences. The global warming at the Earth's surface expected from increasing levels of chemical compounds in the atmosphere could produce major climatic changes with substantial environmental consequences.

Since the end of the sixties and during the seventies, several threats to the ozone layer due to anthropogenic activities have been addressed by extensive scientific researches and international programmes in which BIRAASB has been deeply involved.

THE SUPERSONIC AIRCRAFT THREAT TO THE OZONE LAYER

Christian Muller

the beginning of the seventies, the greatest concent direct supersonic aircraft emissions in the stratosphere

The aririne industry planned on a very large increase in the demand for passenger transport, which could be done in two ways: one was to increase the size of planes, the second was to increase speed and thus to have faster turnover of the fleet.The second option seemed economically possible for the business travel mare d ed to a projection of 150 medium-sized aircratts and 350 large-sized and long-range planes
Developments were under way for a realisic medium-sized airplane in France and UK - the Concorde, a for engine transatantic carrier of around 100 passengers flying at 16 km , while the Russian and A merican projects were carrying more than 200 passengers at an altitude of 24 km . Concorde was based on a filight
profil and hardware routinely tested by supersonic bombers of that time. On the contrary, the America and Russian concepts had only been tested by prototypes and their higher speed excluded aluminium. Therefore, Russin concepts had only been tested by prototypes and their higher speed excluded aluminium. Therefire, it could carry more than its own fuel and was never operated in a scheduled line; the American prototype

 of nitrogen oxides refectst the very
engines. (credit: hhilippe Noret)

dic not reach completion due to a political campaign criticizing the high cost of subsidizing a prestige project of soot by the supersonic transport (SST) engines would lead to a permanent layer in the stratosphere and thus would triger global cooling of the troposphere and precipitate a new ice age. A second argument appeared almost at the same time of the Concorde first fight and US SST dismissal, when Harold Johnston professor of chemistry at Berceley University indicated in 1971 that nitrogen oxides produced in the high temperature supersonic arcraft exhaust could contribute signicicanty to ozone loss by releasing the nitroge
oxides directly into the stratospheric ozone layer The first model simulations suggested that a fleet of 500 Concordes could contribute up to 15% ozone loss in the $16-18 \mathrm{~km}$ altitude range.

The nitrogen oxides catalltic chain leading to ozone destruction was an instant success among attivist students and the main point of an intense anti-Concorde lobby. At that time, a lot of exaggerations circulated, the unfitered UV leading to apocalyptic consequences from the bilinding of all animals to the disappearance of
surface fife.The direction of the "Aerospatiale", the French Concorde manufactures, did not believe that this campaign was based on scientific arguments and discretely asked members of BIRA-ASB around Marcel Nicolet to conduct an independent assessment, based on stratospheric balloon observations of the Aeronomy institute which aready proved that nitrogen dioxide was present in the Earth's stratosphere. The problem was thus posed in a different way. "How many Concordes may fly without having a significant consequence on the biosphere?
For the aerospace industry, the chemistry and dynamics of the stratosphere were a non-negigigible concern related to the air distributed by the compressors to the passengers and could lead to optimal fight plans if the approaches led to research contracts between industry and the institute.

The French "Aérospatiale" money and especialy the use of the "Aérospatiale" computers led the institute to a rapid advance on the quantification of nitrogen dioxide. The modelling effort, in
identification of nitric acid as the end of the catalytical chain, successfully increased.

After Johnston's statement, the priority was the measurement of nitrogen oxides concentrations in the stratosphere on board Concorde prototype 001 and by means of balloon-borne instruments. That was the beginning of the fruitful collaboration between the "Office National détudes et de Recherches Aérospatiales" ThN inf wit Andre Girard and Nicole Louisnard, and B BRA-ASB with Marcel Ackerman and his co-workers
on its first flight on the Concorde prototype, it discovered nitric oxide which was confirmed by the first balloon fight of the same instrument. (See chapter 6).
paralle, the French and British govermments decided to create a temporary structure, the Comité d'Études sur les Conséquences des Vols Stratospérique (COVOS)/Committee on the Meteorological Effects of Stratospheric Aircraft (COMESA) chaired in France by Edmond Brun. In order to study the problem and
fund research, a simiar effort was intiated by the US department of transportation, the Climatic Impact And research, a similar effort was intatated by the US department of transportation, the Climatic Impact frame. At the end of these programmes in 1976, new model simulations with updated kinetic coefficients of key gas phase reactions measured in the laboratory, showed that the threat was not significant, of the order of 1% only, Their conclusions were followed by a tri-national agreement allowing Concorde to fly on an experimental basis. Only twenty Concorde aircraft were ever buitt (of which six for development and ourteen for commercial service), but none of the predicted catastrophic consequences were verified. Finally crash during take-off on 25 July 2000 .

the halocarbon threat and polar ozone

Paul C. Simon

In 1974, Ralf Cicerone and Richard Stolarsky suggested that chlorine could catalytically destroy ozone in the rratosphere. The role of the man-made halocarbons, as chlorine source in the stratosphere, was identified he same year by Mario Molina and Sherwood Rowland (the future winners of the Nobel Prize for Chemistry he Earth's surface spread throughout the whole tronossphere and are transported by atmossheric dyramics the Earth's surface spread throughout the whole troposphere and are transported by atmospheric dynamics
to higher altitude. Active chlorine and bromine in the stratosphere results from the photodisociation of the CFCs and halons by solar UV radiation of wavelength around 200 nm in the upper stratosphere. Changes in the ozone density due to the increase of ozone-depleting substances aso modify the altitude of penetration of solar ultraviolet radiation and the related stratospheric heating rate
Concerns about these threats led to a linited political response. In 1978 the United States, Canada, Belgium Norway and Sweden banned the use of CFCs as propellants in aerosol cans. The countries of the European to increase their CFC production capacity. Australia reduced CFC use in aerosols by 66%. Some of these

products led to a ban on the use of CFCs as aerosol propellants in several countries. However. production of .

Antarctic Ozone

In 1985 , Joe Farman, Brian Gardiner and Jon Shanklin, scientists at the British Antarctic Survey, reported that the ozone column measured in October over the scientific station of Halley $\mathrm{Bay}\left(76^{\circ} \mathrm{S}, 27^{\circ} \mathrm{W}\right.$) had
gradualy decreased by bobut 40 percent between 1979 to 1984 .These results were based on ground observations obtained by means of a Dobson spectrophotometer.joe Farman and co-workers suggested that this trend could have been produced by chlorine compounds of anthropogenic origin. Subsequenty, satellite data avaliable since 1979 but not analysed because of unexpectedy low values of total ozone densities, were
 November, and that it extends over essentialy the entire Antarctic continent. Firally the satellite measurements
showed that the decrease in ozone is not entirely confined in the polar vortex but extends to atitudes $45^{\circ} \mathrm{S}$ but with smiler amplitudes. Subsequent data analys sugseted that since 1979 , At artic ozone noticeably been perturbed all year round.

A first campaign was organized by the United States to perform coordinated measurements at the US station of McMurdo in Spring 1986. This campaign confirmed the recurrence of the "zzone hole". David Hofman and co-workers showed in 1986 that the altitude of the ozone depletion was ranging from 12 to 22 km . For example, observations showed very low abundances in NO_{2} and large amounts of CIO in the lower stratosphere, near 20 km . For the first time, OCIO molecules were detected. confirming the the lowe stratosphere, near 2 km. For the florine chemistry in the polar vortex. A second campaign, taking place in Ausust and September 1987 anfirmed these findings (for more information, see the review paper of Susan Solomon, 1988).

Maps of total ozone column in Dobson Unit,
on int
Ontober 207 and
and from BASCOE data assimiliation model develoloped at
BIRPA-ASB (see chapter 14 and used in the MAC-II SRA-ASS (see chapter 1 T) and Used in the MACCCI

An important feature is the more frequent occurrence of stratospheric cloud in both polar regions during
winter condititos, observed by the SAM I experiment on board Nimbus 7 satellite since late 1988 , reported
 . of the very low temperature in the polar vortex.

The study of the ozone response to perturbations of natural and anthropogenic origin requires a detaile Understanding of chemical, radiative and dynamical processes occurring simultaneously in the atmosphere are the only tools presently aviibare to po predict the e effects of pertuctation in in the fiturese. They are used to
identity the reative importance of different atmospheric processes and to validate theory against availible observations.
Concerms on the ozone layer depletion first led to the Vienna Convention on the Protection of the Ozone Layer signed in 1985 . This treaty was the precursor to the Montreal Protocol on Substances that Deplete the Ozone Layer adopted on September 16 , 1987 for controlling the production and use of man-made
chlorofluorcarbons and halons. It was amended four times in London (1990), Copenhagen (1992), Montreal (1997) and Bejing (I999). In addtition to adjustments and amendments to the Montreal Protocol, the Parties to the Protocol meet annualy and take a variety of decisions aimed at enabling effective implementation of this important treaty.

The European Scientific Respons

The European Union (EU) and its member states had endorsed the Montreal Protocol on Substances that Deplete the Ozone layer Therefore, the European Commision (EC) undertook stratospheric research activites in conjunction with research programmes of indiviual countries and in liaison with the World
Meteorological Organisation (WMO) and the United Nations Environment Programme (UNEP). Miristers of the European Union and of the European Free Trade Association agreed in October 1987 to intitate the European coordination of such research activities.At a meeting inThe Hague (The Netherlands) in 1988 , they agreed on the setup of a small coordination group. Thanks to Heinich Ott, head of the Environment Division of the General Direction XII, the EC "Science Panel on Stratospheric Ozone" was installed in 1989 under the chairmanship of Gérard Mégie (Service d'Aéronomie of the CNRS, France). At the same time, the European Ozone Research Coordinating Unit (EORCU) was also set up to manage, organise and coordinate these
activities, headed by ohn PYle (University of Cambridge, UK) and Neil Haris. Since the beginning BRAA-ASB was participating to the discussion and scientists from the Institute were nominated as members of this panel.

After the discovery of the ozone hole over Antarctica, it was suggested that similar processes were taking place in the Arctic, leading to ozone losses. The deep ozone hole over Antarctica is the consequence of persistent low temperatures within a stable vortex, initiating Polar Stratospheric Clouds formation and heterogeneous chemistry, In the Artic, the meteorological situation is different with an unstable vortex and chlorine activation in the Arctic stratosphere. After having decidedto study the processses leading to stratossheric ozone depletion inthe northern hemisphere,
the first task was the coordination of a large scale field campaign the European Arctic Stratospheric Ozone
Experiment (EASOE), which was composed of research proiects under the EC Environment Programme. The

Official launch of the TH
Official launch of the THESEO 2000-SON
ampaign in in Kiuna by the European

Campaign amed at understanding the causes of the observed ozone losses in the Northern Hemisphere.
From November 1991 to March 1992, over 60 research groups (mainly from Europe, but including a few from the USA, the USSR, and Japan) performed experiments to investigate the Arctic stratosphere. A majo collection of scientific papers from EASOE appeared in a special issue of Geophysical Research Letters in June 1994. BIRA-ASB was involved with ground-based measurement in the U--visibl range of NO_{2} in Keflavk Celane of 20% during the cold winter neriod much less than in Antartica because of the higher stratospheri temperature by about 10 Kelvin in the Arctic and the earlier dissipation of the vortex in Spring. The escond maior European campaign,the Second European Stratospheric Arctic and Mic-latitude Experimen
(SESAME) was supported by 15 projects in the framework of the EC Evvironment Programme, lang with some participation by non-EU states, and took place between January 1994 and December 1995 to cover a complete seasonal cycle. Direct field measurements consisted of balloon launches, scientific aircraff flights ground-based remote sensing of atmossheric composition and some satellite measurements. In addition to
the polar studies SESAME examined the middle latitudes where long term ozone depletion has asso been observed. In addition to ground-based observations, BIPA-ASS participated to a balloon campaign with the MACSIMS ion mass spectrometer.The scientific results of SESAME were published in special sections of the Journal of Atmospheric Chemistry in 1998 and 1999. The ozone depletion was more severe, reaching 30% of the ozone column abundance and even 50% at particular altitudes, because of the coldest stratospheric temperatures reported sof far during the winter:"For the first time, Europe had a unique and proven capability to diaghose and monitor future ezone loss in the Arcievortex, cesple the amosp "E verabily that makes stratosphere", 1997).

The Third European Stratospheric Experiment on Ozone (THESEO) proceeded from winter 1997/98 to December 2000. The principal aim of THEEEO was to improve our understanding of processes controlling the ozone loss over populated areas. Accordingly, the research was focussed on the mid-latitude lowe stratosphere, the linkage to the other layers of the atmosphere, the Artic vortex, the tropics and the subtropics. ThESEOO was funded by EC within the Environment and Climate Programme implemented under the
Fourth Framework Programme, and by national science programmes. One EC proiect, the Third European stratospheric experiment on Stratospheric Ozone Destruction by Bromine (STRATOSPHERIC BrO) was coordinated by Michel Van Roozendael from BIRA-IASB.
as balloon platorms and ground-based instruments. II addition to measurements from GOME on ERS-2 (ESA) and the Polar Ozone and Aerosol Measurements (POAM III) on CNES SPOT-4, those of TOMS on Earth Probe, HALOE and MLS on UARS and SAGE II on ERBS were included in the campaign. European cooperation in UV-B research also significantly increased during THESEO

The fourth campaign, the Validation of INTERRational Satellites and study of Ozone Loss (VINTERSOL) took place from late 2002 until mid-2004. It was the latest of the maior European fifld campaigns to study ozone
loss and was funded jointly from national funding agencies and the Energy Environment and Sustainable Development programme of the EC Directorate-General for Research.VINTERSOL examined the chemical and physical processes associated with stratospheric ozone depletion at Arctic and neighbouring mid-latitudes. The purpose of this campaign was also to validate satellite instruments such as GOME on ERS-2, ODIN and NVISATT.These activities involved a variety of ground-based, balloon-borne, and aircraft-borne instruments coupled with comprehensive modelling activities. BRRA-ASB participated in two projects: QULT (Michel Van Roozendale) and UFTR (Martine De Mazière coordinator)

The Quantification and Interpretation of Long-Term UV-visible Observations of the Stratosphere (QULT was a three-year EU project (2000-2003) devoted to the improvement and development of GOME data products, UV-visble ground-based and balloon-borne data, optimisation of the 3D Chemistry Transport Model and Radiative Transfer Model, as well as internet-based near real-time data dissemination. QULLT med to improve our understanding of global concentrations and trends of stratospheric ozone and related race gas species $\left(\mathrm{NO}_{2}, \mathrm{Br}\right.$ BO, OCIO, 10). The entire data record of the global NDSC U--visible network and baloon-borme measurements has been reanalysed with the purpose of determining ozone loss in the past
monitoring it development in the present and investigating its reation to active halogen and nitrogen species, During the 2000/200 winter, near real-time GOME measurements were produced.The project did, however, ot start until early 2001 and hence, real-time information from the ground-based network was not available for the first winter of the campaign. It was, however, in future winters.
The "Time series of upper free troposphere observations from a European ground-based FTR network"" project (UFTR) integrated existing time series of ground-based remote sensing measurements by FTIR spectrometers with model studies for investigating long term changes of greenhouse gases and O_{3} precursors
in the troposphere. Th target gases are $\mathrm{N}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{O} 3, \mathrm{HCFC}-22, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{UT} \mid \mathrm{TR}$ addressed changes in the chemical composition of the free troposphere and dlimate change over Europe. Understanding these changes especially in the upper free troposphere, is indispensable to predict the fiture evolution of stratospheric O_{3} UFTR contributed to the scientific verification of national and EU climate change strategies, and the Kyoto
involved were operated as part of the NDSC. To achieve the objectives, a new FTR retrieval strategy was developed and implemented in the UFTR network UFTR delivered time series of the target troposspheric and model assessments of the evolution of greenhouse gases, to support upcoming troposphere satel lite missions

The Healing of the Ozone Layer: a Success Story

According to the new Scientific Assessment of Ozone Depletion to be avaiable in 2015 , the stratospheric Ozone ayyer is on frack for recovery towards the middle of this century.Thanks to successfil implementation of
the 1987 Montreal Protocol, the concentration of many Ozone Depleting Ss decreased. However, some substitutes to the CFCs are potent global warming gases. Their emissions grow at a rate of about seven per cent annually and they can be expected to "very significantly" affect climate change
in the next decades. in the next decades
Achim Steiner, the UN Under-Secretary-General and UNEP Executive Director stated recently that «The challenges that we face are still huge. The success of the Montreal Protocol should encourage further action not only on the protection and recovery of the ozone ayyer but also on climate).

OZONEAND CUMATE CHANGES

Martine De Mazière
Stratospheric ozone plays an active role on climate change. The processes affecting stratospheric ozone and the links with cimate are dive by coln teat loo

The Ozone-CCI project, coordinated by Michel Van Roozendal at BIRA-ASB, is part of the ESA Climate Change linitative (CCI) Proogramme, initiated in 2010 . This Programme has been set up to realize the ful potential of European global satellite observational data sets contributing to Esential Climate Variables (ECV)
required by the United Nations Framework Convention on Climate Change (UNFCCC) and the International Panel on Climate Change (IPCC). Among the atmospheric ECVs are ozone, greenhouse gases and aerosols
BIRA-ASB is involved in all three reated ESA projects.

The project"Ozone-CCl" aims at generating new high-quality satellite data sets that are essential to assess the fate of atmospheric ozone and bette understand its link with anthropogenic a ativities and climate change. II the ozone satellite measurements for their use by the climate research community.

Another important activity which is ongoing since 2009 and coordinated by Simon Chabriat at BRA-IASB is the "Stratospheric ozone service" (htpp://mmu.copernicus-stratosphere.eu) as part of the EU Monitoring Atmossheric Composition \& Climate (MACC) project.The MACC project is the prototype of the Copernicus Atmospheric Monitoring Service (CAMS) and will provide key data products on atmospheric composition art will contribute to climate-change monitoring. It is a key European contribution to the Global Climate解 The stratospheric ozone service delivers near-real time analyses of the stratospheric composition, with a focus both total ozone columns and 3 -dimensional gridded fields from data reanalyses starting in 1978 .

elected References

Important historical publications Amanatidis, G.T. and N. R.P. . Harris (Edss) (2001), European research
 European Commision, Directorate-General XII, Science,
 current understanding of the ozone ayer, Office for Official
Publications of the European Communtites, Luxemburg Farman, J. C, B. G. Gardiner and J. D. Shanklin (1985), Large losses tarctica reveal seasonal ClOxNOx interaction
Nature, $15,207-210$, doi: $10.1038 / 15207 a 0$ Molina, M.J. and F. S. Rowland (1974), Stratospheric sink for IUoromethanes chlorine atom-catalysed destruction of

GROUND-BASED OBSERVATIONS

Martine De Mazière and Michel Van Roozendael

Martine De Mazière, Michel Van Roozendael, Crist Amelynck and Hervé Lamy

Systematic monitoring and observation of the environment is a prerequisite for the quantification of atmospheric processes, for providing the basis to understand how and why changes are occurring, and for verification of egulations and Protocols like the Montreal and Kyoto Protocols. The need for an integrated atmospheric observing system, consisting of satellite, airborne and ground-based observations has been advocated already during the International Geophysical Year in 1958, and this need is still there, more than ever, as we recognize the inks between climate changes, stratospheric ozone changes and air quality
Ground-based observations play an essential role in the integrated observing system, for the following reasons .They provide the required high-quality, long-term records of atmospheric parameters,
They are essential for the validation of the satellite data.
3. They are crucial for the verification of the scientific conclusions drawn from satellite data, like trends llimatologies, etc.
They are essential to bridge gaps between successive satellite data records.
5. They provide access to more local phenomena, like lower planetary boundary layer phenomena, and provide additional vertical information that is not easily accessible from satellites, like vertical profiles in the troposphere and such on a more continuous basis than would be achieved with classical aircrafts or balloons.

Ground-based observations are most useful if they are performed network-wise, with controlled network consistency and quality
everal global networks exist nowadays, for remote-sensing observations, like the Dobson and Brewer networks, the Network for the Detection of Atmospheric Composition Changes (NDACC) and the Total Carbon Column

Observing Network (TCCON) as well as for in situ surface observations, ike the WMO-Gobal Atmosphere Watch (WMO-GAW) and ICOS (Integrated Carbon Observing System) networks

BRAMS (Belgian RAdio Meteor Stations) is a unique network developed by BIRA-ASB using forward scattering of radio waves to detect and study meteoroids falling into the upper atmosphere. It will complement optical etworks currently in development in neighbouring countries such as FRIPON (in France) and CAMS (in enelu) in an effort to better understand the origin of meteonids, their mass and speed distributions and ther impact on the upper atmosphere chemistry.

This does of course not exclude the interest of making individual ground-based observations for local process Studies, like the exchange of reactive trace gases between the atmosphere and particular terrestrial ecosystems, iming at a better parameterization of these exchange fluxes and allowing the validation of trace gas emission modules in atmospheric chemistry and climate models.

Related to ground-based observations are observations that are locally performed using balloons or unmanned aerial vehicles (UAVs). Such observational approaches are highly complementary to ground-based networks eerial vehicles (UAVs). Such observational approaches are highly complementary to ground-based networks, roviding additional high resolution information on the vertical and/or horizontal distribution of atmospheric ransport on the interpretation of both ground-based and satellite observations

The following sections focus on the networks and types of ground-based observations in which BIRA-ASB has been or is still involved intensively.

THE NETWORK FOR THE DETECTION OF ATMOSPHERIC MPOSITION CHANGE
Martine De Maziere, Michel Van Roozendael and Jean-Christopher Lambert with contributions from François Hendrick, Bavo Langerock, Corinne Vigouroux and Christian Hermans

The Network for Detection of Atmospheric Composition Change (NDACC) has officilly started in lanuary 1991 , under the name NDSC, Network for the Detection of Stratospheric Change, following a preparation

It has been endorsed by the United Nations Environment Programme (UNEP), by the International Ozone Commission (IO3C) of the Interrational Association of Meteorology and Atmospheric Physics, and by the World Meteorological Organization (WMO) as a major contributor to WMO's Global Atmosphere Watch (GAW) Programme
From the very beginning, Belgium has played an important role in the Network, with the active involvement of Rodolphe Zander (UL_() in the Network inception, initiated in Boulder in 1986. The International Scientifif
Station of the ungravaioch (ISS) has always been a key station in the Network because of its historical time series of infrared atmospheric observations, which started almost 40 years before the Network.
In February 2006, the NDSC changed its name to NDACC, Network for Detection of Atmossheric Composition Change, to emphasize that its priorities have broadened considerably from monitoring changes such as the detection of trends in atmospheric composition, the understanding of their impacts on both the stratosphere and troposphere, and the assessment of links between climate change and atmospheric composition
At present, NDACC represents a set of more than 70 high-quality, remote-sensing research stationssistes for observing and understanding the physical/chemical state of the stratosphere and tropospheree and for assessing the impact of stratospheric changes on the underlying troposphere and on global climate. Its objectives are:
1.To study the temporal and spatial variability of atmospheric composition and structure
2.To provide early detection and subsequent long-term monitoring of changes in the chemical and physical
state of the stratosphere and troposphere, thereby poyding state of the stratosphere and troposphere, thereby providing the means to discern and understand the cause
of such changes
3. To establish the links between changes in stratospheric O_{3}, UV radiation at the ground, tropospheric hemistry, and climate
4.To provide independent validation, calibration, and complementary data for space-based sensors of the atmosphere
To support process-study field campaigns occurring at various latitudes and seasons.
To provide verified data for testing and improving multidimensional chemistry and transport models of the

NDACC can therefore play a major role in supporting international Protocols, like the Montreal and Kyoto rotocols, from their development to their verification.

The NDACC operational structure consists of the NDACC Steering Committee and the NDACC Science Team, which is structured according to Working Groups per instrument type, ike the Infrared and the UVeam, which is structured according to Working Groups per instrument type, Ilike the Infared and the UV-
visible Working Groups, per scientific theme, per specific activity like satellite validation or modelling, or ad hoc (e.g., Working Group on future measurement strategies and emphases).

Since the start of NDACC, Belgian scientists have been involved in the direction of NDACC as co-chairperson Rodolphe Zander, Paul C. Simon, and Martine De Mazeire), or Workng Group co-chairpersons (Rodolophe

Between 1990 and 2000, BIRA-ASB coordinated five EU projects related to the implementation of the NDSC which have played an active role in developing and improving several important aspects of the instrumental echniques used within the network in Europe. They contributed to the achievement of reliable operation of series of specific instrument types, and to our understanding of the ozone loss in the Arctic by contributing the European Arctic campaigns SESAME and THESEO (see chapter 9).
Another important achievement was the intiation of the harmonization of data formats for the NDACC ata, based on the Hierarchical Data Format (HDF). Since then, BIRA-ASB has taken the lead in the further development and improvement of the implementation of the HDF format within NDACC.

More recently, BIRA-ASB has been coordinating the EU FP7 project NORS, Demonstration Network 0 sround-based Remote Sensing Observations in support of the Copernicus (GMES) Atmosshere Monitoring Service. This project includes the four main instrument techiques of NDACC (ozone lidar, microwave oftimized NDACC data for supporting the quality assessment of the Copernicus Atmososhere Monitoring Service, and to develop a generic and operational validation service using the NDACC data.

The Infrared Working Group of NDACC

The infrared Working Group (RWG) is coordinating the ground-based infrared spectrometers that are (FTR), operated accolver it sequired that these are high-resolution Fourier.rransform Infrared spectrometers to strict quality requirements

The ISSJ operated by the Universite de Leiege (ULg) has been one of the first tations in the Network equipped with an F TR instrument. BIRA-ASB started a collaboration with ULg in 1990 to operate their F TR instrumen at the ISSJ and to jointly analyse the data. At the same time, BIRA-IASB started to develop its own data processing algorithms and participated in an algorithm intercomparison campaign organized by the IRWG

The IRWG algorithms evolved from algorithms for the retrieval of total column abundances to algorithms for the retrieval of vertical profile information using optimal estimation inversion techniques. An intermational Worrshop on inverse methods and the inversion algorithm" with the RWG members and organized by RWG code for vertical profile retrievals. G code for vertical profile retrievas.
Around 2000, the idea rose to acquire an FTR instrument at BIRA-ASB and to install it at lle de La Réurion the only southern hemisphere subtropical site in the Network. The first FTR measurements at Ite de La
Reunion by BIRA-IASB were carried out during a campaign in 2002 , in collaboration with the Universite aneral cal during a campaign in 2002, in colaboration with the Universt operated permanently.
Researchers affiliated to the RWG commit themselves to the regular submission to the databse of total column abundances and vertical profile information for 10 atmospheric consituents: $\mathrm{O}_{3}, \mathrm{HCl}, \mathrm{HF}, \mathrm{CIONO}$ $\mathrm{HNO}_{3}, \mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CO}^{2}, \mathrm{C}_{2} \mathrm{H}_{6}$, and HCFC -22. But the FTR technique allows many more molecules to be detected and quantified. For example, at lie de La Réunion, we have been able to retrieve time series of many volatile organic compounds, ike formaldehyde (HCHO), methanol ($\mathrm{CH}_{3} \mathrm{OH}$), acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$) formic acid (HCOOH), ... These data have been used, among others, to support the assessment of tropossheric chemistry-transport models sike IMAGES and GEOS-chem, and to support satellite data validition. They have also indicated the importance at lle de La Réunion of the impact of biomass burning emissions above Afria and even South America

The IRWG invested in a better characterisation and harmonisation of vertical profile retrievals, first for a linited number of target species during a European project coordinated by BIRA-ASB, later for the ten mandatory
constituents listed above. This work is important because, even if the retrieval codes are standardized, retrieval settings can be very different from one site in the network to another.jeopardizing the netw
st the intention to finalise this effort in the coming years with a peerreviewed publication.
Thanks to these developments, the RWWG could contribute significantly to the assessment of trends in the vertical distribution of ozone: the effort was led by Corine Vigouroux of BRAA-ASB, and resulted in severa ablications and contributions to the WMO Scientific Assessments of OZone Depletion 2010 and 251 . The BRA-ASB team is also playing an important role in the development of methodologies and tools for the evaluation of the uncertainty budgets associated with the NDACC IRWG data products. The latest

The UV-Visible Working Group of NDACC

The UV-Visible Working Group (UVVISWG) coordinates the ground-based UV-visible instruments that are afliated to the Network. Developed in the late eighties, the zeith-sky UV-visibe seetroscopy has been used for unattended daly monitoring of stratospheric ozone and related gases such as NO_{2}, BrO and OClO More recently, this tecchique has been extended to the monitoring of the tropospheric composition by means of the so-called MAXDOAS geometry (see Section 10.4), which in addition to stratospheric gases also and cold Iidated and quality controlled according to protocols endorsed by the conmunity In addition instrument tercomparison campaigns are orzanized every few years to promote scientific improvements and provide opportunities for certification of new groups.
The involvement of BRIA-ASB in stratospheric UV-visible monitoring activities started in 1990 with the Intallation of a SAOZ instrument at the ISSJ provided by Jean-Pierre Pommereau (LATMOS, formerly Service

Sas instrument a Oup France latitude $44^{\circ} \mathrm{N}$)

Formic acid measurements obtained at le de ta La Reunion (FFrance) during
the 2004,2007 and 2009 tir campaign (lue dots), compared with

d'Aerronomie, CNRS). This instrument, still in operation today, has provided time-series of ozone and NO
observations covering more than two decades allowing for long.term trends analysis. In the course of the nineties, these measurements were complemented by two additional sites located respectively in Harestua Norway ($60^{\circ} \mathrm{N}$) and at the Observatore de Haute Provence, France ($44^{\circ} \mathrm{N}$). At both sites, the focus was on estabishing a capacity for monitoring the evolution of the stratospheric bromine load.T This culminated in 2008 in the publication of a trend analysis demonstrating the impact of the Montreal Protocol on ozone depletin substances on stratospheric bromine.

In the same period, BRA-AASB aso actively participated to al U-V-vible intercomparison campaign exercises held as part ofthe NetworkThese were successivily organized in Lauder (New-Zealand) in 1992, Observatoire de Haute Provence (France) in 1996, Andoya (Norway) in 2003 and Cabauw (The Netherlands) in 2008. In more recent years, our interest further evolved from stratospheric ozone research to the study of developments were also motivated by the need to validate new atmossheric composition satellite sensors such as SCIAMACHY, OMI and GOME-2. In 2008 a state-of:the-art MAXDOAS instrument was designed and installed in Beiing to monitor the air quality during the Oympic Games. This instrument was subsequently moved to the sub-urban site of Xianghe (East of Beijing) for long-term operation in collaboration with the Institute of Atmospheric Physics of the Chinese Academy of Sciences. Using this system, the variability of aerosols and key pollutantits such as $\mathrm{NO}_{2} \mathrm{SO}_{2}$, HCHO , and HONO were characterized over the period from 2008 until 2013 . In 2010 , a similiar system was installed at the ISS, and in 2013 , this was further complemented Cetral African site of Buiumbura, Burundi.

Besides monitoring activties, the BIRA-ASB team has also played an important role in the development fala retrieval methods and tools. In particular BRA has designed the QDOAS analysis software whic

Selected References

 MaxDoAs instrument installed in Beiing from Jun
2008 to April 2009 on the roof of the Institue fo

Websites

Network for Detectio htpp:/mw..ndac...rg

The NDACC data

More info on the QDOAS analysis software:
http///Uv-visaeronomie.belsoflware/

THE TOTAL CARBON COLUMN OBSERVING NETWORK (TCCON).
Martine De Mazière and Filip Desmet

Martine De Mazière and Filip Desmet With contributions from Bart Dils and Christian Hermans

Map of the TCCON stations (2014).

TIR spectrometer for ground-based atmospheric observations.

In 2011 , BIRA-ASB installed a second FTR spectrometer of the latest generation (Bruker 125 HR) at St. Denis (lle de La Reunion) for solar absorption observations in the near-infrared with the goal to accurately and precisely measure the abundance of greenhouse gases $\left(\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO} \ldots\right)$. These measurements contribute to the international Total Carbon Column Observing Network (TCCON). This network was established in 2004 for the validation of the Orbiting Carbon Observatory (OCO), a NASA
spacecrat dedicited to studying atmospheric carbon dioxide. Today it is used extensively for the validation spacecrat decicated to studying atmospheric carbon dioxide. Today, it is used extensively for the validation
of SCIAMACHY and GOSAT greenhouse gas data products. The TCCON site at lie de La Reunion is one of SCIAMACHY and GOSAT greenhouse gas data products. The TCCON stte at lle de La Rénion is one
of the selected validation targets for OCO-2, which was launched on 2 Iuly 2014 . St. Denis is one of 19 sites worldwide which will be targeted regularly by the satellite with the aim of validating the greenhouse gas measurements from space.The accuracies and precisions achieved in the network are of the order of 0.25% and 0.25%, respectively, for CO_{2} and 0.4% and 0.3% for CH_{4}. At present, we have time series of total column abundances of greenhouse gases at lle de L La Rénnion, covering a period of three years. The data are archive in The TCCON database accessible via the TCCON website.

Selected References

首

Website

htppsi/tccoon-wiki.catech.edu

the belgian solar uv-visible monitoring network

Didier Gillotay

The significant Stratospheric ozone depletion at mid and high latitudes in both hemispheres, confirmed at the end of the eighties by satellite and ground-based measurements, has led to a need for reliable measurements of the solar ultraviolet irradiance at the Earth's surface. Because the UV-B ($280-315 \mathrm{~nm}$) solar irradiance is Strongly absorbed by stratospheric ozone, the global climatology of the UV irradiance at the surface will be affected by ozone variations and trends. The UV-B wavelength interval induces also photoreactions on biological systems.Therefore, it is important to quantiff future UV-B changes on global and regional scales in order to investigate the potential modifications induced to the biosphere.

BIRA-ASB has been involved since the beginning ina series of European programmes in order to establish a European UV monitoring network and a European UV database. Principally based on spectral measurements, this network is still partially operational today. But without any more financial support from EU, the active parters in the network have to find support in their own countries, which can explain some defections.
On a regional scale, BIRA-ASB has established progresively a Belgian UV network in order to investigate the regional UV climatology of the five most significant climatic areas of Belgium.

The first station, fully operational since March 1993, is deployed on the roof of the BIRA-ASB building in Uccle.This station allows:

1. Spectral measurements: ich in information but with a low temporal resolution
2. Integrated measurements: UV-B, UV-A, and total solar irradiance with a high temporal resolution (up to 1 measurement per second)
Quasi spectral measurements offering a good compromise between spectral resolution (6, 10 and 14 bands throughout the U-visible range) and temporal resolution (about I measurement per minute) Anclary measurements such as meteorological parameters (temperature, pressure, relative humidity, wind speed and direction, rainfall, sunshine duration) and cloud parameters (cloud cover and altitude)
The important variety of instruments deployed in Uccle, and an experience of 10 years at this site, provided us the expertise to select the most adequate instruments to equip the five other sations of the network.

In 2004, a second station was deployed in Redu (Ardennes) on an instrument tower located at the Euro
solar spectrum
 Solar spectra a the top of the e tatosphere and a t the
surface for clear sky and cludy sky conditions, with

Space Center. This station is equipped with 3 broadband instruments (for integrated measurements of UV-B UV-A and total solar irradiance), one filterradiometer (6 channels in UV + PAR channel, i.e. Photosyntheticali ACtive Radiation, 400-7000nm) for quasi spectral measurements, a meteorological station to provide the meteoralogical parameters and a cloud infrared raciometer to
set of instruments is the base of the new stations equipment:

Two years ater, in 2006, a third station, with the same equipment as the second station, has been deployed in Belgian coast
n 2007 and 2008 , two more stations were estabished respectively in Virton (Gaumes) on the roof of the C II, Hall and in Mol (Kempen) on top of the administrative building ofVITO
The last station of the Belgian network has been recently (201) deploved at Mont Rigi at the "Station Scientifique des Hautes Fagnes".

A close contact with the station of Diekirch (Luxemburg) permitted to add this station in the Belgium Luxemburg network.

Finally, three broadband instruments have been installed at the Antartic Base Princess Elisabeth (Antartica) since December 2012.

The data obtained since more than 20 years in Uccle have demonstrated the anti-correation between stratospheric ozone and UV-B, the positive trends of UV-B irradiance, and the negative trends of the total czone column. They contribute also to a better understanding of the UV climatology and the quantification
of the most importan the Earth's surface.
The regional UV climatology, based on climatic particularities of the area covered by our stations, is presently The regional UV cimatology, based on climatic particularties of the area covered by our stations, is presen
studied in detai but requires, mainly for the most recent stations, an extended period of measurement.

The Belgian UV monitoring network is presently fully operational and produces high quality data important for a better understanding of the UV climatology and the UV radiation transer: A comprehensive description of the network, the instruments, the database, and the real time measurements, especially the UV index, is presented on our website. The prediction (24h) of the UV index in real atmospheric conditions is presenty under development and should be avaiable in the near future.

 network, repesesenting the five most significant climatic station reas of Belgium, and the Luxemburg .

Selected References

TROPOSPHERIC TRACE GAS MONITORING USING MAXDOAS
Michel Van Roozendael and François Hendrick
Michel Van Roozendael and François Hendrick
With contributions from Christian Hermans, Caroline Fayt and Gaia Pinardi

Map of ground-based UV-visible sites operated by BIRA-AASB
184 cheaper 10
for the long-term monitoring of stratospheric ozone, NO_{2}, Bro and OCIO (see Section NDACC). With these instruments optimal sensitivity to the stratosphere is obtained by taking benefit of the favourable
twilight geometry To extend to capabilities of UVV-visbe instruments and twilight geometry. To extend the capabilities of UV-visibe instruments, and motivated by a progressive shift
of interest within NDACC to address the study of the tropospheric composition, new instrumental and data retrieval developments have been initiated in the years 2000 . This has led to the design of the soc-called MultiAXis DOAS (MAXDOAS) technique. By observing the sky at several elevations between horizon and zenith MAXDOAS instruments can provide information on the vertical distribution of trace gases such as such as $\mathrm{NO}_{2}, \mathrm{HCHO}$, glyoxal, $\mathrm{HONO}, \mathrm{BrO}^{2}, \mathrm{SO}_{2}$ and 1 O in the lower troposphere. In addition, since the light path of the scattered radiation is affected by particles, the aerosol extinction can be measured as well.
BIRA-ASB has been involved in the development of the MAXDOAS technique since more than a decade. Over the years, we have developed performant research-grade instruments as well as advanced retrieval optimal-estimation-based vertical profile inversion schemes. In 2008, a state-of.the-art MAXDOAS system was assembled at BIRA-ASB and installed in Beijing as part of a bilateral research agreement with the Institute of Atmospheric Physics at the Chinese Academy of Sciences (IAP/CAS, Beijing, China). Moved to Xianghe ($\sim 50 \mathrm{~km}$ East of Beijing) in 2010 ,it has been used to document the evolution and variability of several key atmospheric pollutants in North East China. Likewise, the high altitude International Scientific Station o Jungrfauioch (Swiss Alps) has been equipped for free-tropospheric MAXDOAS studies in 2010 and more
recently a new monitoring a activity has been started in Buiumbura (Burundi) for the study of African emissions t is the intention to progressively upgrade all UV-visible monitoring sites operated by BIRA-AASB with similar systems.

Since it is based on a remote-sensing approach allowing for the simultaneous determination of total columns and vertical profiles, the MAXDOAS technique is ideally suited for satellite validation applications. Moreover MAXDOAS instruments provide observations averaged over a spatial extent that is more representative of the air masses sampled by satellite instruments than in-situ instruments. Based on our MAXDOAS sites, we
have contributed to the validation of the successive GOME,SCIMMACHY,OMI and GOME-2 satellite sensors
with particular focus on $\mathrm{NO}_{2}, \mathrm{SO}_{2}$, HCHO and BrO . Ongoing activities aim at extending the capabilities of OAS instruments for large scale satellite validation.
BIRA-IASB takes a leading role in coordinating such developments in the framework of ESA and EU projects. It is the ambition to promote and extend the MAXDOAS technique as one of the key validation tools for European Copernicus (previously Global Monitoring of Environment and Security) programme.

elected References

$\cos _{201}^{201}$
0_{0}^{3}

$\frac{8}{8}$

Chemistry

Terrestrial ecosystems such as forests, crops and grasslands

 Volatile Organic Compounds (BVOCS) with an estimated global emission rate of 1.2 petagram ($(\mathrm{Pg}$) of carbon per year $\left(1 \mathrm{Pg}=10^{15}\right.$ grams $=$ one billion metric tonnes), which is more than ten times larger than the anthropogenic VOC source. Why BVOCs are emitted by plants is still matter of debate, but there is evidence herbivores and pathogenss or by a atracting pollinators and natural enemies of infesting herbivores or parasaites Moreover. BVOC emissions are thought to mediate plant-plant communication and to protect plants against various kinds of environmental stresses.The variety ofVOCs emitted by plants is overwhelming and they are emitted by all plant iisusus (leaves, stem and roots). Isoprene and monoterpenes are dominating the global BVOC emision spectrum, and they are mainly emitted by broadleaf and coniferous trees, respectively. Another important class of BVOCs are smal Chain oxygenatec compounds e.g.g methanol, acetone, and acetaldenyde) which are emited by al ecosystems some very specific compounds such as sesquiterpenes and green leaf volaties, the latter ones being associated to the typical odour of freshly mown grass

Because of their high global emission rate and generally strong atmospheric reactivity, BVOCS significantly influence the composition and physical properties of the atmosphere. BVOC oxidation has a major impact on air quality and heath through formation of tropospheric ozone (in polluted regions) and secondary organic SOA particles can alter cloud properties and, hence, influence climate.

In order to incorporate BVOC emissions in local, regiona and global climate and transport models, considerable efforts have been made in the last two decades to set up species-specific BVOC emission inventories, based on landscape maps, climate data, biomass density data and BVOC-specific emission algorithms. Curren algorithms only consider the effect of instantaneous and previous light and temperature conditions, so moisture and leaf age on BVOC emisions. Recent research, however. has shown that many more factors, such
as plant phenology, nutrient supply and all kinds of abiotic and biotic stresses, can significantly affect BVOC

cordingly.

voC Research Requires a Multidisciplinary Approac

he mass spectromentry group at BIRA-AASB started BVOC flux measurements in 2007, using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). As BVOC research requires a highly multidisisciplinary approach, strong Bio Tech), encompassing the fields of atmospheric chemistry, analytical chemistry, ecophysiology, plant biolog and micrometeorolog.

First measurements were performed in the framework of the Belspo/"Science fora Sustainable Development" project IMPECVOC "Impact of environmental conditions and phenology on BVOC emissions from fores ecosystems" (2006-201 I) and the FWO project "Measurement and modelling of BVOC emissions by forest
 leafbranch le
technique).

Dynamic Branch En Natural Conditions

Natural Conditions an be varied independentity, allowing to to disentangle the e effects of both parazemeters on BVVOC enisions f. an be varied independently, allowing to disentangle the effects of both parameters on BVOC emissions. Flux hert dynamic enclosure systems. Upscaling of BVOC emissions from tree sapingst to mature trees in forests not traightforward and therefore branch enclosure measurements at different locations in the canopy of a mature beech tree were subsequenty carried out.

The collected data allowed charaterization of BVOC emissions from different tree species widespread over Europe. Temperature and light were found to be the major driving parameters, but clear evidence was found Inat a whole series of other prameters drive BVOC emisions as well. For example, an induced drought Stress experiment and episodes of naturaly occurring herbivore infestation reflected important changes in the of light-dependent monoterpene emissions on past temperature conditions than previously thought and they ISo revealed that BVOC emissions are strongy influenced by leaf phenology and position of the branch within the canopy.

 corn field at Lonzée, Belsium.

Proton Transer Reaction Mass Spectrometer
Wich trace ags molecules become charred upoon Proton Transter Reaction Mass Spectrometer
an instrument in which race gas molocules ecome charged uop
transfer of a proton ($H+$) from a protoonated water molecule and lansfer of a proton (H+) from a protonated water molecule and
are subsequently fitered according to mass to-charge ratio and
detected

Long-term Eddy Covariance BVOC Flux Measurements from Entire Ecosystems

 are quite unique in their kind. Only a fevw other data sets on ecossystem scale with comparable length, quality and completeness are available and therefore those data are very useful for evaluation of global carbon-chemistry--limate models. Deep statisitical analysis of this database revealed some interesting features such that de novo synthesized isoprene is more efficiently produced in the top of the canopy than within the canopy. Deposition fluxues of oxygenated VOCs (e.g, methanol, acetaldehyde) are clearly observed for this mixed forest. On an annual basis, the forest even acts as a sink for methanol, which has never been reported in the literature up to now. An adsorption/desorption model of oxygenatedVOCS infrimom water films in the ecosystem, accompanied by chemical or biological degradation of these compounds in the water films, has been developed by the Unit of Biossstem Physics of the University of Lièe and has been successflly applie for the modelling of the observed methanol deposition fluxes.Future BVOC research, in the framework of the recently started FRFC project CROSTVOC "Impact of stress on Biogenic Volatile Organic Compounds exchange between crops and the atmosphere" (2013-2017), w
focus on filling knowledge gaps in BVOC emissions from grasslands and crop ecossytems and on studying the impact of stress, related to future climatic conditions, on BVOC emissions by those ecosystems.

Selected References

SATELLITEVALIDATION

ean-Christopher Lambert

Why Satellite Data Require Validation

 ozone, pollutants and greenhouse gases. Primariy, these instruments measure the radiance emited or reffected by the atmoshhere and the Eartri's surface. Using dedicated retrieval agorithms, the veritical column nand/or rorofile of the target constituents is derived from their spectral signature identified in the measured radiance. However the
acuraray of the geophysical data retrieved from satellite measurements is known to be affected by a variety of sources of uncertaint, which need to be understood and charaterized properly before any scientific use. Indeed, hese uncertainties introduce not only sytematic baises and random noise in the geophysical data, but they can soo superimpose long-term drifts, fictitious geographical pattems and artificial cycles onto the real atmospheric rends. pattems and y ccles of interest, making the latter less quantifable, if not even undetectable in the worst cases

Calibration and Validation

The characterization of a measurement system starts with the definition of the responses of this system to known controlled signal inputs: this process is referred to as calibration. The radiometric and spectral responses of the Instrument must be characteried appropriately to enable quantitative and unambiguous detection of atmospheric constituents through their effects on the measured radiance. Such calibration activities of the instrument are
necessary not only before launch in a dedicated laboratory, but also continuousy in orbit, since the performance of optical instruments and their associated detectors and electronics degrade severely with time, due to the harsh space environment. Unaviocable shorterterm changes in the properties of optical elements and detectors add to the longerterm degradation to introduce at a hater stage, f f not corrected properly, time-dependent difits and tifcid ades in the atmospheric data time series

Atter successtul calibration of the radiometric data (radiance and irradiance spectra), the vertical column and - profile of the target atmospheric species is retrieved through a suite of agorithms modelling the radiative rannfer through the atmosphere and performing spectrometric analysis of the effects of the target atmospheric species on the measured spectra. This retrieval process is sensitive to uncertaitites in the spectral andysis and in the composition of the atmosphere and properties of the Earth's surface. In particular, uncertainties linked to features extibiting a cyclic variation (e.g, solar elevation changing with time, diurnal and seasonal change in the vertical distribution of temperature, seasonal occurrence of snow...) can result in systematic errors with a periodic signal. Clouds and aerosols can thooly the raciation field dramatically and the detemmination of their coverage and properties is critical. For al these reasons and others itis essential toc carry out the next step of data
characterization, refered to as geophysical validation, which is defined as the process of assessing by independent means, the quality and ftress-forpurpose of the geophysical data products derived from the measured spectra.

The Essential Role of Ground-based Networks in Satellite Validation

Three cardinal prinipipes rule the necessary quality assessment of any data, and a forioior the necessary geophysical
validation of atmospheric data from satellies. First, al data and derived products must have a ssociated with them
 alow al users toumented and quantifiable assessment demonstrating the level of traceability to intermationaly agreed (where possible SI) reference standards.
Practically calibration usually relies on several complementary methods, including reguar measurements of reference radiation sources ike onboard calibration lamps, the Sun and other stars, and vicarious calibration
sites on Earth (e.g, homogeneous scenes offered by salt takes and ice caps). The following step, geophysical stes on Earth (e.g., homogeneous scenes offered by sat taes and ice capp). The following step, geophysica
validation, generally reies on comparisons with correative measurements of the target constituents accuired by well characterised and documented instruments. Comparisons show how accurately the satellite data set reproduces known atmospheric signals measured by the reference systems: mean values, geographical pattems
short-em fluctuations annul cccles longtemtrends

To test the satellite data in as many conditions as possible, geophysical validation is carried out most preferably across a network of stations spanning different atmospheric states. latitudes, solar elevations, meteorologital
conditions, surface properties etc. The NDACC network is serecisely a network of remote sounding stations shaped as a reference network for satellite validation. NDACC data respond to the cardinal requirements for a central databasese and through a suite of protococls ruling the design of NDACC instruments, their measurement and retrieval process, and their data qualty control.The use of complementary instrumentation (e.g.spectrometers Working in different spectral ranges, hence measuring simiar constituents but with different sensitivities) enabbes
investigations over the whole vertical range and of many species. The geographical distribution of the network invesigations over the whole vertical range and of many species. The geograpicica cistribution of the networ makes tit wel suted to teets satelites under a vanety yf tatmossheric and cimatic states of interest. Long tern needed between instruments operating on different satellites and during different periods. NDACC works under the auspices of WMO's GIobal Atmosphere Watch, which includes other contributing networks with simiiar quality commitments ilie eg.g the Global Ozone Observing System (GO3OS), the Total Carbon Column Observin

So Years of Leading Research in Validation and Metrology of Remote Sensing

Inthe 1980s, BRAA-ASB intiated a long and unique record of satellite validation activities by conducting balloonbased measurements of the vertical profilie of stratospheric ozone and nitrogen dioxice. Aready wwith the geophysical validation of firt generation satellites, the metrology of data comparisons was questioned. in the
observed discreapancies between satellite- and balloon-based data how o discriminate between real discrepancies observed discrepancies between satellit- and balloon-based data, how to discriminate between n
and the effects of spatial mismatch and, in the case of nitrogen dioxide, of diumal cycle effects?
the mid-1990s, with the advent of ESAAs ERS-2 GOME, the first of a seres of European instruments dedicated to the global monitoring of a amospheric gases from space, BRIA-ASB started a long-lasting pioneering support to
the validation and evolution of the new generation of satelites, by means of reference measurements acquired by NDACC, other networks and other satellites. One example is the evolution of GOME total zonene datain 15 years $(\pm 20 \%$ of bias depending largely on the solar elevation), to a reprocessed data record meeting the extremely stringent reauirements for climate research and for IPCC studies: ess than 1% of bias, whatever the solar elevation and a long-tern stability better than 1\%/decade. VVilidation methods have progressed in parallel to the evolution
of scientific requirements for satellite data, with in-depth research in the metrology of remote sensing and of of scientific requirements for satelite data, with in-depth research in the metrology of remote sensing and of 2tmospheric data comparisons.T. date, BIRA-AASB has developed accurate valdation methods for ozone and many
 NASA, the Canadian Space Agency etc. Buididing on this heritage, BRA-ASB is now preparing the validation of the ext generation satellites, including the European Copernicus Sentinels and the fiture geostationary constellation far qualty satellites.

Selected Reference

THE BELGIAN RADIO METEOR STATIONS NETWORK

Hervé Lamy

Top: Transmite I ICated in Dourbes
ap crosesed dipol w with a 8 x x 8 m metalic
. ac crossed dipole with $8 \mathrm{~m} \times 8$. sid acting asa reflecting plan).
Left: Receiving antenna located in uccle Left: Receiving antenna loca)
(3-elements sag antenna).

Website
http:/brams.aronomie.be

Earth's atmosphere is constantly hit by interplanetary solid particles whose size varies between a fraction Of a micron anc a few meters. The latter objects are very rare but a recent remarkable example is the the atmosphere every day is estimated between 40 and 100 tons. They move at supersonic speeds (ove $11.2 \mathrm{~km} / \mathrm{s}$) and are strongly heated when they hit atoms and molecules of the upper atmosphere. Most of them are fully vaporized at heights between 80 and 120 km . Along their trajectory, these particles also create $\mathrm{MH}-2$) emitted by a transmitter on the ground. The duration of this reflection can last from a fraction of second for the smallest objects up to several minutes for the very big ones. This is the basic principle of the radio detection of meteors used by the Belgian RAdio Meteor Stations (BRAMS), a project of the Belgian Institute for Space Aeronomy tunded by the Solar Terrestrial Center of Excelence (STCE). BRAMS comprise a dedicated transmitter located on the site of the "Centre de Géophysique du Globe" in Dourbes and a see of more than 25 radio receiving stations spread over the Belgian territory.
Refection of the radio waves mostly comes from one point of the trail of electrons and its position changes depending on the location of the receiver (the refection is said to be specular). Multi-station observations BRAMS project. Once the trajectory is known, a detailed analysis of the signal received at each station provide additional information on the object such as ionization, speed, deceleration and mass. These observations also give access indirectly to speed of winds or mesospheric temperatures at altitudes which are too low for in situ measurements by spacecraft or too high to be reached by balloons. The second main goal of the BRAMS project is to compute meteor fluxes which are very important for example to estimate the risks of impac
for spacecratt in orbits.

The two main advantages of radio observations of meteors over optical observations are a higher sensitivity to small objects (which are the more numerous and do not give rise to a detectable luminosity) and the possbility to carry out observations contrinuously (while optical observations can only be performed during night time and with clear skies).
So far, BIRA-AASB has finalised the instalation of more than 25 radio receiving stations synchronized by GPS

carried out continuously, each station provides approximately I GB of data per day. These data are firsts tored ocally then reguarly sent to BIRA
The first step in processing the raw data is to make a spectral analysis of the signal which generates a spectrogram. The majority of meteors have a typical spectral signature which in principle allows an easy dentification in these spectrograms. This task is however complicated by the presence of parasitic signals such lares. A lot of effortsis, local interferences or sometimes strong broadband radio emissions cue to solar echoes in spectrograms.
The BRAMS network is operational and, for some stations, data have been recorded for several years. One of the stations located on the radio-astronomical site of Humain (belonging to the Royal Observatory of elegium) will be a radio interferometer allowing to determine the direction of arrival of the meteor echoes giving rise to an echo in Humain. In the coming months, most efforts will concentrate on developing powerfu algorithms for trajectory reconstruction and meteor flux computations.

Selected References

Spectrogram obtained at the receiving station in Uccle on 07/10/2011 ar

MAPPING AIR QUALITY FROM AN UNMANNED AERIALVEHICLE
Alexis Merlaud and Michel Van Roozendael
With contributions from Caroline Fayt, Jeroen Maes, Frederik Tack
Building on the expertise ofBIRA-ASBB in ground-based and aitborne spectroscopict techniques for atmospheric research, a new activity has recently been initiated in the institute, which aims to operate compact custom-

Interest of UAV Platforms for Atmospheric Research

UAVs are increasingly being used in atmospheric research. Their most obvious interest lies in performin experiments in hazardous environments such as inside typhoons, volcanic plumes, or merely close to the
ground.Thanks to the progress in the miniaturization of instrumentation, UAVs also offer low_cost aternative for various airborne experiments currenty performed from balloons or traditional aircraft, such as measuring profiles of temperature and relative humidity in the atmospheric boundary layer. Besides reducing the tota cost of these experiments, an advantage of operating from UAVs is the ease of deployment of such smal platforms, which require only minimal infrastructures compared to traditional aircraft.

The UAV Activity at BIRA

In this context, BIRA-ASB has initiated a UAV activity in one of its fields of expertise: the measurement of atmospheric trace gases using the so-called DOAS technique (see also Section "NDACC"). Target chemical species are key components in air qualty such as nitrogen dioxide (NO_{2}), suffur dioxide $\left(\mathrm{SO}_{2}\right)$, and ozone $\left(\mathrm{O}_{3}\right.$). Particulate matter can also be quantified from a UAV with the same technique. DOAS instruments have aready been operated from aircraft for satellite validation, urban air quality studies or for investigating the exhaust plumes of individual ships or volcanoes. Our aim is to reproduce all these experiments from a UAV A longer term objective is the improvement of the high resolution chemical transport models, which is no possible with space-based sensors due to the limited spatial resolution of the latter

Instrumental Challenges
Compared to operating an instrument from the ground or from a traditional aircraft, a miniaturization effort is required when working with a UAV. Reaching the limited size, weight, and power consumption was possible through the use of compact spectrometers and computers, together with custom-built electronics s ircuits and housings. We chose the whiskbroom set-up, which is widely used for space-based instruments (LANDSAT
IASI, GOME-2). Simulations indicate that, when flying at 3 km altitude, we should be able to produce maps of
O_{2} in the atmospheric boundary layer at a ground resolution of 200 m , covering an area of $20 \times 20 \mathrm{~km}^{2} \mathrm{l}$
hour Such chara ses are currentily zround 10 aspecially promising for validation studies of air quality satellites, whose pixe

The SWING Instrument

The SmallWhiskbrom Imager for Atmospheric composition monitorinG (SWING) is the UAV pay Ood built at BRAA-ASS.This instrumentis based on previvus BRRA-ASB mobili DOAS Experiments and was d developed platorm. SWING is based on a compact grating spectrometer, a miniature computer, and a scanning mirror The weight, size and power consumption of SWING are respectively $920 \mathrm{~g}, 27 \times 12 \times 12 \mathrm{~cm}^{3}$, and 6 W. The housing was manufactured using the 3 D printing technology. The UAV is an electrically propelled flying-wing. whose wingspan is 2.5 m .1 l can fly at 3 km altitude for 90 minutes

The SWING payload, a miniature trace gas imager dedicated to
measurements fom a u AV.

Status and Future Experiments

Con,
in May and September 2013 . One of the UAV experiments was performed downwind of the city of Galat across the Danube River Galati is a middle size city (250 000 inhabitants) but includes the largest stee factor based DOAS measurements. NO_{2} and water vapor were clearly detected in the UAV spectra of the flight on 20 September 2013 .

The UAV activity is ongoing, At the time of writing, we are developing the georeferencing algorithms necessar to produce air quality maps. We are also working on a second version of the SWING-UAV system with our Romanian colleagues, which will be able to measure SO_{2} and aerosols in addition to NO_{2} and water vapor. In the near future, we will eefform more flights around large power plants or chemical factories in Romania and compare the measurements with other airborne and dround-based instruments dedicated to ai quality in the
 IASB arready operates severala ground--based instruments (see NDACC section). In a more remote future. SWING-UAV could be used to study the air quality at the level of individual streets in Belgian cities.

Selected References

LABORATORY STUDIES Ann Carine Vandaele and Crist Amelynck

$\rightarrow+\cos$ alot riather
 Win Craturn

dimate evolution of the last decades has created the need to monitor the changes of the atmospheric The climate evolution of the last decades has created the need to monitor the changes of the atmospheric
composition. The discovery of the ozone hole over Antarctica and of a similar phenomenon in the Arctic, the global warming of the atmosphere through the increasing emissions of man-made greenhouse gases, and the analysis of the effects of volcanic activities on a global scale, are but some examples of issues addressing the political and the public communities. The global observation of trace gases is presently best performed from space-borne instruments, and certainly observations of other planets' atmospheres rely on such instrumentation. Most of these space- or ground-based measurements use spectroscopic instruments that probe regions of the electromagnetic spectrum extending from the microwave to the ultraviolet. The retrieval of abundances from the spectra require validated inversion algorithms, but most importantly strongly depend on the availability of accurate reference spectra or data, which can only be acquired in the laboratory under well-defined and ontrolled conditions. The knowledge of the radiative properties of the atmospheric species is also valuable for he modelling of the radiative transfer of the atmosphere, be it of Earth or of other planets.

The interest for spectroscopy applied to atmospheric studies has a very long history at the Belgian Institute for Space Aeronomy. Indeed even our first director, Marcel Nicolet, started his scientific career with the study of star ectra. The first spectroscopic studies carried out at the institute date from the sixties and were devoted to the easurement of the absorption of molecular oxygen $\left(\mathrm{O}_{2}\right)$ in the Schumann-Runge bands ($175-205 \mathrm{~nm}$). Since en the laboratory was upgraded throughout the years and different species were investigated, such as HNO_{3} grating spectrometers for the measurement of spectroscopic data, even in the UV-visible region.

Another aspect developed at BIRA-ASB concerns the study of gas phase ion/molecule reactions in support of with the develoction of atmospheric trace gases by Chemical lonization Mass Spectrometry (CIMS). It started of the Measurement of Atmospheric Constituents by Selective lon Mass Spectrometry (MACSIMS) project (see chapter 6) and is ongoing today with laboratory studies aiming at selective detection of biogenic volatile organic compounds (BVOCs).
performed at BIRA-IASB.

Details of the O, Schumann-Runge
absorption bands

Paul C. Simon

The characterisics of the ultraviolet absorption spectrum of O_{2} are important in aeronomy because photodissociation of O_{2} by solar ultraviolet radiation between 175 and 242 nm is the source of ozone i pheodissociation and, to a lesser extent, in the stratosphere. Moreover, the O_{2} absorption controls almost completely the penetration of this solar ultraviolet into the atmosphere.
The absorption cross section varies by about five orders of magnitude in that wavelength range and photodissociation calculation requires accurate and detailed measurements. Experimental results have been obtained by Ackerman and Biaumé at high resolution at specific wavelengths. These accurate measurements were used by Kockarts to calculated very yigh resolution absorption cross section corresponding to the width of O_{2} ines in that range. BRAA-ASB made at that time a maior contribution in photodissociation process
studuies in the mesosphere and the upper stratosphere. This work has been refined later by Nicolet and Peetermans (1980).

Selected References

HALOCARBONS ABSORPTION CROSS SECTIONS

Didier Gillotay and Paul C. Simon

As mentioned in chapter 9 , the ozone loss processes in the stratosphere by chlorine radicals was first Suggested in 1974 . Halocarbons are photodissociated in the upper str
wavelengths around 200 nm, generating chlorine and bromine radical

Modelling of aeronomic processes, and in particular of the chemistry of stratospheric ozone, requires herefore the accurate knowledge of the interaction of these minor atmospheric constituents with the coming ultraid Tre terion
The interaction matterradiation is experimentally accessible by measuring the absorption cross sections of these molecules in the laboratory, which rely on the measurement of the amount of light absorbed by a sample at a given wavelength. Spectrophotometry, particularly in the visible and UV spectral ranges of the electromagnetic spectrum, is one of the most widely used techniques in chemistry and the life sciences. Excited molecules can possess any one of a set of discrete quanta of energy described by the laws of quantum mechanics defining the energy levels of the molecul. The energy (and wavelength) of absorption is defined by the difference between the energy levels of the transtion. In U--visible spectrophotomemtry, the observed energy levels, which arise from the various modes of vibration of the molecule (e.g.s.the stretching and bending ff various covalent bonds). In general, electronic transitions consist of a cluster of closely spaced spectral lines, so close one to the other that they cannot be distinguished. We then speak of absorption cross-section.
By comparing the incident and transmitted intensity of the radiation passing through a cell containing the sample to analyse, it is possible to derive the absorption cross section of the species of interest. Indeed the absorption of light is proportional to the absorption cross section, to the concentration of the species in the accuracy measurements of temperature and pressure, i.e. the concentration of the species. High accuracy salo needed on the measurement of the length of the optical path (i.e. of the cell in which the absorbe s placed). And of course, the best possible determination of the incident and transmitted flux intensities is equested.

The absorption cross sections were measured, after purfication of the gases through vacuum distillation, by scanning the entre spectrum ($160-320 \mathrm{~mm}$), wavelength after wavelength. This was done using a double bean
monochromator equipped with two absorption cells of respectively 200 cm and 20 cm length. One cell is used as reference and the other one as absorption cell. For each wavelength incident and absorbed flux Intensities are measured quasi simultaneously by means of two separate detectors. It is very important that both cells are maintained exactly at the same temperature.

This type of experimental device allows to measure the UV absorption cross-sections at a wide range of temperatures (from 210 to 295 K) covering the different conditions met in the stratosphere. UV absorptio Cross sections of more than thirty CFC, HCFC and halons were measured at the BRA-ASB as a function of temperature during the seventies and eighties and are still currently used as basic input data in many stratospheric models.

In addition to ultraviolet spectroscopic studies, infrared cross sections of substitutes for halocarbons currently used in the nineties have been obtained at very high resolution using the ULB Fourier transform spectromete used in the inneties have been otained at very high resolution using the ULB Fourier transtorm spectrometer
at three temperatures namely $287 \mathrm{~K}, 270$, and 253 K.These a aternative hydrohalocarbons have similar physical properties but have lower ozone depletion potential as CFCs because of their low atmospheric lifetime due to their reactivity with the hydroxy (OH) radical acting like the "cleaning" agent of the troposphere Unfortunately, their potential contribution to the radiative forcing of the atmosphere was not negligible and required accurate measurements of absorption cross section made at the ULB and two-dimensional radiative chemical-dynamical modes calculations made at NCAR to determine their global warning potential. The resuls obtained in this study were usefil in the defition of future regulations on halocarbons
elected References


```
Absortion cros.sectionn of some CFC satthree stratospheric
```


Sclienitist at BRAA-ASB, in close colabooration with the Laboratoire de Chimie Physique Moleculare of the Champagne-Reims in France, performed a series of flaboratory measurements of different molecules absorbing in the UV-visible and near-R ranges: $\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{O}_{2} / \mathrm{O}_{2}-\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ and its isotopologues HDO and $\mathrm{D}_{2} \mathrm{O}$. The measurement principle is the same as the one described in the previous section:it requires the measuremen of the radiation attenuation through a cell filled by the sample in its gas form.

In general, temperature and pressure dependent cross sections are needed for atmospheric studies Indeed, large temperature effects are expected and observed. They are due to the changes in the therma populations of the vibrational and rotational levels, as the temperature changes. $A s$ both effects are importan in atmospheric studies, references obtained in the laboratory should be measured under temperature and pressure conditions as close as possible to the atmospheric ones. This means in general operating at very low pressures of the molecule under investigation and with a buffer gas at pressures up to 1013 hPa for Earth and for planets like Mars or Verus with CO_{2} as buffer gas, since CO_{2} is the main element of these atmospheres. The low pressures imply the use of very long absorption paths to ensure a good accuracy on the cross
sections. Such long paths are generally obtained through the use of multiple reflection cells. The larger one was 50 m long and was located in one of the famous caves of Reims. More recently, SO_{2} and BTX (benzene toluene, and xylene) absorption cross sections were obtained at high resolution. Most of these data are now part of worldwide renowned spectroscopic databases, such as HITRAN or GEISA.
Fourier transform spectrometers have superseded conventional grating spectrometers for the measurement of spectroscopic data, even in the U-visible region. These instruments provide a very high-resolution and Wave number-calibrated data. The advantages of the Fourier transtorm spectrometers are numerous and
explain why such instruments have been used in the laboratory as well as in the field to determine line explain why such instruments have been used in the abooratory as wel as in the field to determine ine
parameters or monitor atmospheric pollutants, from the ground or even from space (ACE-FS for the Earth PFS on board Mars Express). Until recently, these instruments were essentially operated in the IR region. In UV and visible regions, the absorption features are generally large or even diffuse, the spectra are often congested and it is not possible to separate individual absorption lines, hence the absorption cross section concep However some molecules (O_{2} or $\mathrm{H}_{2} \mathrm{O}$ for example) have spectra in which indivicual lines are still presen and observable up to the UV. Classical F I spectroscopy can therefore be extended in these spectral regions
to deliver line parameters, such as the line positions, the intensities, and the seff and foreign gas broadening coefficients.

Recently BIRA-ASSB intitited a new collaboration with the Laboratoire Lasers et Spectroscopies group of the University of Namur in view of the preparation of the future ExoMars mission to be launched in 2016 (see (hapter 13). One of the main objectives of this mission is to disprove or confimm the presence of methane $\left(\mathrm{CH}_{4}\right)$ on Mars. Improved reference laboratory data are therefore needed. The observation of methane will be done in the IR spectral domain, where each transtion ine is seen independently, contrary to the UV omain. Speccific istrumentition is readind esperila we have measured the CO_{2}-broadening coefficients of 28 absorption lines of CH 44 . Each line was recorded at som temperature and at different pressures, ranging from 8 to 50 hP , which allowed for the determination of the effect of CO_{2} on CH_{4}.
aboratory measurements of high quality as support to space missions will laways be a prerequisite to any mprovement of the observations and detection possibilites. This is true for the next mission to Mars, but it and technolog.

CHEMICAL IONIZATION STUDIES OF ATMOSPHERIC COMPOUNDS

 Crist Amelynck and Niels Schoon
Quadrupole Mass Spectrometer

 lons with a different masscharge are separated from the detected $\begin{aligned} & \text { ions because of their unstable paths. }\end{aligned}$

Laboratory ion chemistry studies at BIRA-ASB started with the development of a Flowing Afterglow
instrument (FA), consisting of a flow tube reactor coupled to a quadrupole mass spectrometer. Negative reactant ions were produced upstream of the reactor and convectively transported by an inert buffer gas flow to the mass spectrometer sampling orifice at the downstream end of the flow tube. Rate constants of ion/molecule reactions could be determined by introducing controlled flows of the neutral reactant at a fixed distance upstream of the sampling orifice and by simultaneouly monitoring the corresponding decrease
of the reactant ion signal with the mass spectrometer. Identification of the resulting product ions allowed elucidation of the reaction mechanisms. Rate constants and product ion distributions of ion/molecule reactions were generally obtained at room temperature and at a pressure of around $\mid \mathrm{hP}$. The laboratory instrument was mainly used to study ion/molecule reactions of several reactant ion species (e.g. $\mathrm{CO}_{3} ;, \mathrm{C}_{n}^{1}$ n $(\mathrm{n}=1.13)$, $\mathrm{CF}_{3} \mathrm{O}^{\circ}$) with stratosphericall relevant trace gases (e.g. $\mathrm{HNO} \mathrm{H}_{3} \mathrm{ClONO}_{2} \mathrm{HCI}$) in support of the detection and quantification of these trace gases by means of the balloon-borm MACSIMS instrument. Because of the low temperatures and high pressures in the lower stratosphere, hydration of the reactant ions in the reactor of the flight instrument was vis

To improve inherent shortcomings of FA instruments, a Selected Ion flow Tube instrument (SIIT) was buit a BRAA-ASB. In a SIFT instrument, the reactant ions are sampled from the ion source into a vacuum chamber mass-selected bya quadrupole mass fiter and subsequently iniected into the flow tube reactor lliection of a
singe reactant ion species into the reactor allows to study ion/molecule reactions in better defined conditions singl ereactant ion species into the reactor allows to study ion/molecule reactions in better defined condition

Gas Phase Ion Chemistry Studies of Biogenic Volatile Organic Compouncs
Whereas the Flowing Aterglow (FA) experiments mainly focused on negative ion chemistry of trace gases of stratospheric interest, the SilT instrument has mainly been used to study the reactions of BVOCs with $\mathrm{H}_{3} \mathrm{O}$ NO^{+}and O^{2}.The interest of studying BVOC ion chemistry in support of these techiques stems from the importance of these compounds for tropossheric chemistry and their impact on air quality and dimate (see Section 10.5 on BVOC field measurements).
The SIFT experiments at BIRA-ASSB started with the kinetic and mechanisicic study of monoterpene isomers and some of their atmossheric oxidation products with the three reactant ions, monoterpenes being a
major class of BVOCs which are now reguarly being measured worldwide. This pilot study was followed by maior class of BVOCs which are now reesulary being measured worldwide. This pilot study was followed by
ion chemistry studies of other reevant classes ofVOCS such as biogenic alcohols (green leaf volatiles a.o.)
sams, evemental composition
Isomeric Compounds
omposition buta a different
sesquiterpenes, biogenic alcohols and aldehydes and esters of biogenic and anthropogenic orign. These SIFT scies showed some typical reaction mechanisms for the reactions of the three reactant ion species with specific BVOC classes and provided a weath of data which are directly applicable to the detection of these compounds.

Towards More Selective On-line BVOC Detection

Many isomers have been detected in the atmosphere for the different classes of BVOCs. However, apart from used for selective isomer detection or for selective detection of compounds which result mainly in isobaric product ions (e.g. monoterpenes and the monoterpenoid alcohol linalool). In order to increase the selectivity in BVOC detection without losing the on-line capability, several novel approaches were recently started in the laboratory. A first approach consits in adapting the SIFT instrument to a Flowing Afterglow - Selected on Flow Tube instrument (FA-SIFT), to allow the pro.
A second approach consists in replacing the quadrupole mass spectrometer by a tandem mass spectrometer hn this instrument major product ions of the reactant ion/BVOC reaction are sampled into a vaccuum chamber mass-selected in a first quadrupole filter and subjected to collision-induced fragmentation in an octopole apilicon celity The resuting fragment ions are subsequenty anayzed by a second quadrupole analyzer. The ragmentaition patterns. This method has allowed to distinguish some monoterpene isomers and some sesquiterpene isomers, which can be considered as a step forward towards selective detection of those compounds.
Snce chemical ionization mass spectrometry has been used in many recent important discovereses reated to atmospheric trace gas and particle composition and continuously gains in importance, proper characterization of the underlying gas phase ion/moleculie reactions in dediciated SIFT-related laboratory studies will remain mportant in the future.

Selected References

The Selected Ion Flow Tube laboratory instrument at BIRA-ASB.

Christine Bingen
The glowing atmosphere at sunset Pictur take
around
and
kill m atitude fom a stratospheric
Christine Bingen
The term "aerosols" is a general name referring to solid or liquid particles in suspension in the atmosphere. The and scattering of solar radiation. The vertical distribution of aerosols plays a non-negseligible role in the vertical and scattering of solar raciation. The vertical distribution of aerosols plays a non-negigible role in the vertical
distribution of solar energy in the atmosphere (and therefore controls its thermal structure), but also in the formation of clouds.
Contrarily to molecules that have a well-defined chemical structure and properties that can be quantified in the aboratory, aerosols present a great variability in terms of size, shape, and composition that can possibly evolve during the whole time of their existence. Their origin can be very diverse, either natural (sea salts, desert dust, volcanic clouds and ashes, etc.) or anthropogenic (emissions from agricultural activities, biomass burning, urban or industrial pollution, etc.). In the stratosphere, aerosols originate mainly from huge volcanic eruptions able to send sulfuric gases and ashes to such high altitudes.They consist then basically of small liquid droplets composed of water and sulfuric acid, with a diameter of about 0.01 to 0.05 micron and may freeze and give rise to polar stratospheric clouds at very low temperatures encountered during the polar night (about - $-78^{\circ} \mathrm{C}$). It is important to know their characteristics (composition, size) to determine the way they perturb light propagation through e atmosphere by scattering or absorption (combinea in the concept of aerosol extinction), and how they fluence the stratospheric physico-chemistry

Remote sensing of atmospheric aerosols can be made through occultation observations, based upon the observation of a light source (usually the Sun, but possibly other stars or planets) through the atmosphere and the measure of the extinction caused by species contained along the line of sight. Compared to limb or nadir observations of reflected sunlight, occultation only depends on scattered light by atmospheric species in the
forward direction. Important information (shape, size, composition ...) on aerosols can be obtained by sampling he scattering phase functions at the limb, from balloon.

BIRA-ASB is closely associated with the history of aerosol research, where it took a pioneering role at severa key moments, sometimes by lack of interest from larger research teams for a topic they considered as mino From the early studies of the aerosol layer discovered in the stratosphere by Junge in 1960 and observed from stratospheric balloons to the last developments of tropospheric aerosol research triggered by the air pollutio Issue, BIRA-IASB has played an important role in the development of aerosol research through the achievement fobservation campaigns, modelling and development of retrieval techniques for the satellite data processing The present chapter gives an overview of the main milestones of this Belgian advance through aerosol science.

Photographs of the Earth himb taken at low solar e eleation angles from balloon gondolas on 7 May and on 5 Uune 1980 . In the 5 Lune case, materia the cloud cover in the forerground can hardly be seen throught the whitish veil. In contrast, the cloud cover is well visile on 7 May. (from: Nature
nagazie. 16 October 1880) lagazine, 16 October 1980)

Function describing the variation of the scattered Phase Function
of the viewing direction. The phase function also depend onton on the
 and neutral chemistry. Aerosol science was less in the scope of aeronomic research at the Institute, and neither the influence aerosols may have on atmospheric chemistry nor the importance of their interaction with the atmosphere and solar radiation, were as clear as today

When Everything Changed: the Start of Concorde Flights

which fly at an antitude of about II km, this supersonic airolane was able to fly un the commer triatassorphere a Which fly at an altitude of about 11 km , this supersonic airplane was able to fly in the lower stratosphere at
altitudes of 16 to 18 km . Anticipating the development of a flee of about 150 Concorde aircrats and 350 larger supersonic aircrafts in America, scientists were concerned about the fact that the emissions produced by these new engines, flying through the stratosphere, might produce a new artificial aerosol layer sufficient to initiate a new cold period.The emission of stratospheric planes as well as the black carbon particles produced from their exhaust became a research topic from the point of view of radiative transfer At that time, aerosal scattered light was even seen by eye by passengers during high altitude supersonic flights.
BALoon Limb Aerosol Detection scarned the Earth's limb at thrree Bevengths (440,600 , and 850 nm) at sunset, from an altitude of $30-$
35 km . Polarization is is also measured in the 850 nm channel. esupposing the existence of elevated atmospheric ayyers, and evidence of enhanced scattering in the red and of absorption in the blue wavelength range indicated the probable existence of metallic nuclei at high
altitude

Radiaitive Transfer
eoretical method used to describe the light propagation through a
cattering medium, possibly with a complex configuration.

The Era of Balloon-borne Aerosol Measurements at BIRA-IAS

In the eightes, , IRA-ASB started to investigate the stratosplerc aerosol iayer. Stracspleric ballons, aread used at the institute at that time, formed an ideal platform for such studies. A new experiment is designe aimed to the Earth limb: one loaded with colour film and the three others with panchromatic film and with fiters in the near UV, blue and near infrared. The cameras are the same Hasselblad reflexes, which NASA had qualifed for the Apollo programme, with the space qualfifed 80 mm Zeiss objective. The optical properties of these cameras are thus perrecty characterised. The experimental setup alowed measuring simutaneousi) the phase function (the intensity of radiation versus the observation angle) and the extinction of the settin Sun by the aerosols. Using some hypotheses, these two elements are sufficient to derive the overall aerosa
size properties and density. size properties and density. challenge in view of the experimental conditions The cameras we controled remotely from the ground by
very simple device. Information about the alttude and azinuth angle is sent to the ground from sensors boord the gondola, which moves and rotates by the action of the local winds. Researchers controling last flights) to perform triangulation calculations in real time, and to decide from the incoming geolocation iffrmation when the camera had to be activated. Pointing the cameras at the right moment in the right ection to to Sun is an art, which delivered s. researchers on the ground.

Five balloon campaigns are carried out from Aire-sur-I'Adour (France) between 1980 and 1984 with an experimental setup dedicated to aerosol measurements. The results are surprisisg. During the first flight on 7 May 1980 , the background aerosol layer, contrarily to what is believed at that time, is clearly measured.
On May $18^{\text {b }}$, the Mount St. Helens erupted in the North-Western US, about 8500 km away from Aire-surAdour: On 5 June 1980 , shortly after the beginning of this eruption, a second balloon fight was launched by BIRA-ASB from Aire-sul/-Adour: Measurements reveeled a huge strengthening of the aerosol layer, showing lambiguously that the Mount St. Helens cloud was able to migrate rapialy around the globe and to the publication of this discovery in Nature, pitcures taken on board the balloon illustrated the cover of the famous ournal. This BIRA-ASB observation helped to understand the cooling effect of previous volanic eruptions Laki, Tambora, Krakatau,...) and their impact on weather and climate.
A later balloon filight put into evidence a layer of "brown" particles (particurly absocting in the blue) ound the 64 km altitude. This layer is still not confirmed at present, but probably comes from metallic particles generated by the entry of meteorites into the atmosphere, on which chemical molecules are able oo condensate

Eruption of the Mount St. Helens in the North-Western US on 18 May 1980

(courtes. Florence Goutal

Stratospheric Aerosols and the Ozone Depletion Issue

Ah hough the interest for the satellite technology gradually took over the efriss devoted to aerosols throug the "home-made" ORA experiment and the development of the ENVISAT programme, aerosol observations by balloons were pursued through a collaboration with the "Labora
from the "Universite des sciences et Technologies" in Lile (France).

In the framework of the EU-funded SESAME Arctic campaign in 1995, balloon filights were performed in Kiruna (Sweeden). During this winter, the "BALloon Limb Aerosol Detection" (BALLAD) instrument developed at LOA was launched twice. BIRA-ASSB participated to the analysis of the results (see chapter 9).
The aim of this campaign was to better understand the processes responsible for the ozone depletion in the polar stratosphere, giving rise to the so-called "zzone hole"."The link between stratospheric aerosols and stratosphere on the other hand had arready been estalished. A better knowledge of the aerosol chemica compostion and phase, and of aerosol size properties, was needed to characterize the catalyicic chemica processes occurring at the surface of aerosols and leading to ozone destruction.
Overall, the balloon-borme observations of aerosols gave a clear impetus to aerosol studies at the Institute, and gradually, the team
at BIRA-ASB was born

Selected References

STRATOSPHERIC SATELLITE OBSERVATIONS OCCULTATION \& IMAGING INSTRUMENTS
Filip Vanhellemont

With contributions from Charles Robert

Aerosol Observations Throughout History

The visual observation of atmospheric aerosols and clouds is probably as old as humanity itself: the optical extinction of solar light by liquid sea spray, mineral desert sand, biomemss burring smoke, water clouds or ice cirrus is inmediately obvious when observing sunsets and sunrises. Written testimonies on the visual observation of volanic aerosols date back to at least Pliny the Younger, who reported on events during
and following the Vesuvius eruption (of Pompeif fame) in $A D 79$. Stratosheric aerosols cause the effect of the "purle light", reddening of the twwilghts sky when the Sun is 3 to 4 degrees below the horizon (18 to 4 minutes after sunseet). The connection between the "purple light" and aerosol in the atmosphere at high attitudes was realized for the first time after the Krakatoa eruption in 1883 , when a lot of volcanic ash and gases penetrated in the stratosphere "The eruption of Krakatau, and subsequent phenomena", report of The Krakatau committe of the Royal Society, 1888). William Ashcroft, contemporary English painter made many sketches of spectaculur twilights after the eruption. The "purple light"" was ater observed after many major volcanic eruptions, which took place in 20th century.The "purple light" phenomenon was explained as
aresult of light scattering on stratospheric aerosol after the discovery of the stratospheric aerosol layer by Christian Junge in 1960 . Rev. Sereno Edward Bishop, some time after the Krakatau eruption in 1883 , published an early scientific observation at Honolulu of diffraction rings around the solar disk in the journal Nature. A direct causal link between all these optical phenomena and stratospheric aerosols was proven only in the $20^{\prime \prime}$ entury with the aid of balloon experiments, but prior to this, observation of the Sun had always been the main observational modus.

Measuring Aerosol Abundance: the Occultation Method

Admiring a sunset or surise is essentially way of performing a qualitative transmision measurement: solar
 species along the optical path. The combination of several subsequent transmision measurements while the Sun is setting or rising is known as a solar occultation experiment.
Such a ground-based observation of course provides only local atmospheric information, twice a day. The
situation improves when we move the observing devicic on board a satllite Severlateculation occur within 24 hours and the geographic coverage is much larger.We get a few additional bonuses

Sketches by William Ascroft

Ope physical process of light attenuation through optical absorptition an scattering by molecules and particiles

 A most hintit years later (bebow, the ash nany of the drainages and the crater ake
rthe summit cadera Red is vegetated areas grey are ashteephri
(creatit NASA.)
an increased sensitivity due to the long optical paths, a better attutudinal resolution caused by the sidewas observational geometry, and the absence of optical extinction by the dense tropospheric regio. It is hardl
a surprise then that the first global maps of high-altiude aerosols and clouds were provided by NASA first-generation satellite-borne solar occultation experiments. From 1978 onvard, a longterm stratospherit
aerosol/cloud database has emerged, fed with data provided by instruments such as SAMII. and follow-ups
. SAGEII land IIM Most impor mantyrger for the frist time in history the formation and global Sel of the stratospheric aerososls resulting from plinian volcanic e eruptions esppecially II Chichonon, Mexico, 1982 , and Mount Pinatubo, the Philippines, 1991) could be monitored
There is no reason for the exclusive use of solar light for occultation measurements, in principle, every Iight source will do. The idea of sellar occultation as a means to probe planetary atmospheres dates back at least one century, and the technique was successflly applied to determine the atmospheric properties of nearly al Planets in our solar system (es the Voyager missions).

Vast quantities of ovelanit gases (mostly sulfur
dioxide) were blown int the atmosshere dur)

after the M
 profies of f hight thunderstorsmsm toping out at the the Below: the same sane tye of photograph, taken Aususis

BIRA-IASB Activities

Consisting of a UYM and of a UVMis Near-Infrared module, and an infrared part. Mounted on the European EURECA space platform, it was meant to be launched in 1988 on board a Space Shutte. However, the 1984 Challenger
disaster caused a maior rescheculing of all Shuttle missions. In hindsisht, this turned out to be somewhat of a Uck strike:by the time of the ORA launch (Julty 31 , 1992), the stratosshere had been iniected with a stage of a
 in the $20^{n \prime \prime}$ century in terms of stratospheric effects. The subsequent evolution of the stratospheric sulphate aerosols was followed beautifuly by ORA during its 10 -month operation, and the obtained data led to a number of important papers.
SIRA-ASB has been actively involved in the GOMOS science team for more than a decade. GOMOS (Global zoone Monitoring by Occultation of Stars), A UV-visible grating spectrometer working in stellar occultation mode on boord the Eurcopean Earth-arbiting ENVISAT satellite, Performed measurements during its entire 1 -year mission from March 2002 to April 2012 . Athough mainly targeted towards ozone observation. GOMOS has delivered a good long.term view of the global distribution of stratospheric aerososls. PSCs and eirrus clouds, including the sporadic production of aerosols from volcanic eruptions (such as the Sourfiere mo eruption, Montsererat, 2006). At Present, BIRA-ASS is finalizing a new retrieval code that dir deliver These results, will be crucial fort the modedling of the dynamics of stratospheric carticles and their role in processes such as ozone depletion and radiative forcing

uture Prospects

Whr respect to particle and dloud type identification, simple altitude profiles of aerosol optical extinction are of limited use; a complete 2D image of the observed scene would be more suitable. And indeed, in the past wo decades, digtal imaging detectors have permitted instruments such as the Canadian-Belgian instrument (se (Atmossperic C Chemistry Experiment) on the SCISATI I latform to be equipped with imaging channels (see section "ACE", chapter 8). At present, a ful-blown mult-spectral satellite-imaging instrument (see section ALTUS", chapter 8) is being developed at BRA-AASB, which will be launched in the coming yeers. Apart and the morphology of the associated atmossheric layers. Needless to say, the prospect of such a technically mnovating instrument, of BIRA-ASB design, is very excting.

Sky Brightness Measurements

Ahotometric measurements of the twilight sky brightness at one or more wavelengths are able to give some
quantitative estimates of stratospheric aerosol loading. Ater the sunset, an observer which is situated on the Earth's surface is not able to see the direct solar light anymore, but the sky remins illuminated for about an hour and a half, highhighting gradually higher and higher atmospheric layers and offering to the eye the changing colurs of the sunlight scattered by the molecular atmosshere and by aerosols. When sunlight passes at the vel of the aerosol layeri it undergoes intense multiple scais on the many aerosol particles. The resulting effect is an increase of the intensity of the ight scattered toward the observer on the ground.

Aerosol Extinction
cident beam by the The removal of radiant energy from an incidenost beam bet by the
processs of aerosol absorption andlor scatering per kilometer Aerosol Optical Depth
mis to radiation passing daation passing
through it

Radiative Transfer

Theoretical method used to describe the light propagation through
a scattering and abosorbing medium, possily with a complex
configuration
Sky Brighness
tarea of the sky
Ske sirghtre of the sullight scattered by the unit area of the sk
The angle between the line observer-local zenith and and the line $\begin{gathered}\text { lin } \\ \text { observer-the Sur }\end{gathered}$

Twilight event scheme.

The Charge-Coulped Device (CCD) spectrometer
used for measurements and the twilights sy above

The path, the Sun's rays travel through the aerosol layer before being scattered towards the observer, varies during the morning or evening twilight with the postion of the Sun below the horizon, quantified by the solar zenith angle. Consequenty, the twilight sky brightress measured from the ground by a photometer will vary aerosol layer the variation looks like a "hump" on the twwiight curve measured by the photometer, actually stored as the logarithm of the twilight sky brightness as a function of the solar zenith angle.

As the evening twilight progresses, the stratospheric aerosol layer is first iluminated tangentially. Grazing Surrays pass through almost the whole thickness of the layer before they are scattered towards the ground When the Sun sinks deeper below the horizon, its rays slant through the aerosol layer, pass below the laye penetrate into it once more and then are scattered towards the observer situated on the ground. Finally, the aerosol layer appears to be totally shadowed by the Earth and contributes only to the attenuation of the light scattered in the atmossheric regions above the layer towards the observer

The variations of twiight sky brightness with stratospheric aerosol load can be used to estimate the optical depth of aerosol layers in the upper troposphere and lower stratosphere. This quantity reflects the light attenuation due to the presence of the aerosol particles as it propagates through the atmosphere.

Aerosol Studies at BIRA-IASB, using Twilight Measurements

Twilight measurements were intiatee by Abastumani Astrophysical Observatory and carried out routine above Tbilisi, Georgia. This time series allowed observing major volanic eruptions such as the Pinatubo eruption in 199 and more recenty the Nabro eruption in 201. Collaboration was intitated between processed as a common work with BIRA-ASB and Finnish Meteorological Institute. This common study applied to the observation of the maior eruptions gave rise to several publications.
The eruption of Nabro, a stratovolcano located in Eritrea occurred on 13 June 2011 .The air masses, which were above the volcano at the time of the eruption and at the plume altitude, were transported later towarc Georgia, South Caucasus. Red sunsets were observed above Tbilisi, Georgia throughout luly 201 I.

Retrieving the Features of the Aerosol Layer from Twilight Measurements
The twiights sky brightness measurements were modeled in spherical atmosphere approximation to take into account the Earth's curvature. Retrieving the atmospheric features from twiight sky brightness measurements is not an easy task. As mentioned above, the sunlight, before entering the spectrometer, undergoes many is not an easy task As mentioned above, the sunight, beifore entering the spectrometer, undergoes man
acts of scattering on aerosol particles and air molecules (muttipl scattering) that have to be rebuilt by
simulations of the light propagation through the atmosphere. The signal processing is then carried out using a adiative transfer technique that simulates the light propagation through the atmosphere, taking into account scattering and absorption caused by its main components, amongt which the encountered aerosol particles. Sy simuluting in this way the propagation of many light rays through hal liluminated regions of the a atmosphere is possible to obtain a quite realistic view of the light signal received by the photometer.The aerosol content of the atmosphere can then be rebuit by testing dififerent sceenarios and by identifing the most probable a function of the altitude. Stratospheric aerosol layer optical depths can then be computed viai integration of aerosol extinction profiles over altitude.
The enhanced stratospheric aerosol layer persisted above T bilisi at about 17 km altitude from July to the beginning of August 2011 after the eruption of Nabro, and aerosol extinction profiles were retrieved from wilight observations. This shows that these measurements give a way to estimate the aerosol load in the way in the global monitoring of major volcanic eruptions.
elected References

The aererged aerosol extinction perofile (black slolid

Integration of the
RAd
Adiometer ORA
RAdiometer ORA

Pioneering Aerosol Studies at BIRA-IASB: a Balloon Story

BIRA-AASS's know-how in terms of aerososl sis the result of a long tradition. First aerosol studies were closely realted to stratossheric balloon filihts.At At that time, BRA A-ASB's interest concerned electrified aerosols, which were studied by measuring conductivity changes in conducting plates hanging to the gondola while entering the stratosphere.
The eruption of Mount St-Helens in 1980 is a key event for aerosol studies at BIRA-ASB, with the first observation of the aerosol layer from a stratospheric balloon. Scattering measurements are used to retrieve
the aerosol concentration and size from extinction measurements From 1968 and the aerosol concentration and size from extinction measurements. From 1968, an eight-bit IBM 1800 computer with 32 kB memory is used for this purpose. It is replaced in 1977 by a UNIVAC 1108 computen The results provided by this 36 bits machine must be considered very cautiously due to rounding errors, The scienitist make use of routines provided by the National Center for Atmospheric Research, NCAR (Boulder Colorado). These routines, written for a CRAY computer, had to be adapted for this specific use, a ver hazardous task in view of the code features at that time. Each result had to be validated first using a published
case and reproducing it The use of statistical methods in scattering calculations was tempted in collaboration case and reproducing it. The use of statistical methods in scatering calcuations was templed in collaboration
with the University of Lille, in order to verify the reationship between direct and diffused radiation. But these studies were rapidly abandoned in view of the inextricable complexity of the error estimation and of the interpretation of the results. After 1992 , much better performing UNIX machines replace the UNIVAC computer.
Turning Point: the ORA Experiment
The growing participation of BIRA-ASB to space experiments from the early nineties results in new developments of aerosol characterization activities. The ORA experiment on board the EURECA platorm originally foreseen to fly in 1988 , is finally launched in August 1992. This lucky delay makes the instrument a privileged spectator of the period following the eruption of the Mount Pinatubo in June 1991 , a majo milestone in aerosol research. The mision is asuccess and leads to the production of aerosol datasets of remarkable qualty in view of tits design. This instrument, dedicated to microgravity measurements, observes
the image of the whole Sun focussed on a single point. Such an extremely wide field of view embracing the the image of the whole Sun focussed on a single point. Such an extremely wide field of view embracing the
sun and surroundings, leads to exceptional signal-to-noise ratios. However.it is not well suited for the retrieval of aerosol profiles with a typical vertical resolution of about $1-2 \mathrm{~km}$. The ORA team takes over the inversion of the aerosol measurements and derives an aerosol extinction dataset over the whole mission (August 1992 May 1993). In view of the complexity of this il-conditioned problem, the agreement with reference dataset such as the one from the NASA experiment SAGE II, is remarkably good.

The ENVISAT Era
The nineties are marked by the start of the ENVISAT programme, a large ESA satellite launched in February 2002. Amongst the dozen of instruments on board, the GOMOS experiment is based on the pioneering concept of stellar occultation. While traditional solar occultation provides two measurements per orbit (one sunrise and one at sunset), the use of stars allows a dramatic increase of the data rate up to 40 occultation measurements per orbit. In 1995, the Institute endorses the responsibility of the aerosol retrieval from GOMOS. This theme, considered at that time as a minor topic without much interest by the main European esearch teams, is leff to our small country. For the Institute, howevere, it is a very suitable way to use and ASB to become one of the main actors in stratospheric aerosol studies in Europe.

The SAGE II Experiment: 16 Years of Aerosol Observation from Space

During the following decades, the growing aerosol team develops aerosol characterization activities around hother satellite mission: the NASA SAGE II experiment. Launched in 1984 , about 30 months after the major olcanic eruption of El Chichón in March-April 1982, this mission continued its measurements till 2005 providing a unique time series covering several maior eruptions (Ruiz, 1985; Kelut, 1990, MT Pinatubo and ASB makes use of this opportunity to develop new aerosol studies. Whereas extinction was formerly used oc characterize parameters, the 4 spectral channels of SAGE II open new possibilities. The signals expected from these four channels will depend on the size of the aerosol particles, and hence, the spectral response can provide information about the particle size on a statistical basis. The problem is investigated successfully t $\operatorname{BIRA-ASB,\text {,withthepublicationofthefirstglobaltimeseriesofsizeinformationandparticledensityfor}}$ the period 1984-2000. Different studies result from these achievements. The very slow decay, from 1990 to about 1996, of the huge aerosol cloud produced by the Pinatubo eruption, is a precious data source to study how aerosols gradually migrate toward the poles, how the droplet size can change during thei
existence formation of condensation nuclei, growth by condensation, coaguation of several droplets, and exnally removal by sedimentation), how their concentration varies in time and space under the influence of ransport, following the dynamical features and patterns of the general stratospheric circulation around the globe, and how their abundance is influenced by external factors such as cosmic rays.

ENVISAT in the clean room at ESTEC. (credit: ESA)

Gomos: Past, Present, and Future
The GOMOS experiment poses new challenges in terms of aerosol retrieval methods. Contrary to ORA which embraces the solar disk as a whole, GOMOS points to stars to scan the atmosshere, and sees, like observers on the ground, scintillation effects due to turbulences in the atmosphere. The weakness of the star signal and the need to remove scitillation from the noisy measurements offer new challenges to researchers
BIRA-ASB's aerosol team continues to work on the development of more accurate and performing retrieval algorithms, alowing to provide the best quantification of aerosol parameters (extinction, size distribution, etc.) needed to constrain large climate modes, to validate other satelite experiments, and to prepare satellite missions of tomorrow such as BIRA-ASB's ALTUS mission.
During the past 50 years, BIRA-ASB has been able to grasp opportunities, often as niche projects in the shadow of the contributions of large intermational research groups. From the glorious past marked by the aerosol sciences that is appreciated and recoognized today as highly yaluable by the international community.

Selected Reference

ROPOSPHERIC REMOTE SENSING OBSERVATIONS BY INFRARED ATMOSPHERIC SOUNDING INTERFEROMETER
Sophie Vandenbussche

Measurements

eeasurements Aerosols observations have been for a long time undertaken using measurements at ultraviolet and visible wavelenghs. In that case, the ight comes from the Sun, and is reflected, scattered or absorbed by gases
and aerosols present in the atmosphere. More recently, the scientist have started using Thermal lifraRed and aerosols present in the atmosphere. More recently, the scientitst have started using Thermal lifraRed
TIR) measurements to obtain additional information about the aerososs. In that case, the wavelengths used (TIR) measurements to obtain additional information about the aerosols. In that case, the wavelengths used
correspond to the thermal emission of any object at a temperature close to that of the Earth. That means that the light observed by TR satellite instruments has been emitted by the Earth surface, and all gases and aerosols in the atmosphere. Before this light reaches the satellite instrument, it mayy, as for UV and visible ght, be reflected, scattered or absorbed by aerosols and gases (athough TR scattering by gases is extremely weak). Using TRR measurements to get information about the atmosphere has an additional advantage over UV and visible measurements: it does not require sunight, therefore allowing measurements also during the and annual cycles because they depend on the Earth surface and atmosphere temperatures, which in turn depend partly on sunlight.
About 10 years ago, BIRA-ASBB started preliminary studies of aerosol retrievals from TRR measurements, that were published in 2006 . For the next few years, the subiect was more or less abandoned to be reveriveds 2011 with the beginning of desert dust (sand) and volcanic ash aerosols studies using IASI instruments (see section
 patforms (MetOp), looking down to the Earth and measuring the radiation exting the atmosphere in the near, mid- and fari-ifriared. ASSI instruments are well suited for long.term studies, ensuring a continuous and onsistent TR data record from 2006 to at least 2030 (by successive launches)

erosols Retrievals, an Unexpected Use of IASI Data for Climate Studie

 and Aviation Hazard PreventionASI was initially designed to obtain vertical profies of temperature and water vapour with high vertical resolution and accuracy, to be used for meteorologicil applications. Data from IASI have hovever been largely used for atmospheric chemistry applications, which was not foreseen at the time of conception. One of these applications is the retrieval of aerosol a atmospheric load (concentration, altiude) and properties (particle size. and volcanic ash studies.

Temperature of a black body (perfect emitter thensst Temperature enit the
measured radiance; this unitif often used when looking at TTR datio Effect on the radiance, which is the amount of energy (light) that passes
 and/or scatterin
Term commonly used in atmospheric sciences to refere to the proceses
during which information is ertieved fir
 fol which instrument) using a physical model of the interaction
olight with he atmosphere (radiative transer) and a mathenatic
algorithn

Desert dust is windblown from arid areas mainly in the Tropics and can be transported over long distances (up to Europe) before "flling off the sky", as a yellow "sandy" dust. This aerosol is the most important one (in
annual mass burden) in the troposphere. Most of its sources are natural, but the anthropogenic part is als annual mass burden) in the troposphere. Most of its suurces are natural, but the anthropogenic part is also
non-negigible, and related to the land use. At the current state of the science, the uncertaitites regarding desert dust retrievals make it extremely hard to assess sts global impact on the climate. t t is even unsure if desert dust is cooling or heating the Earth and its atmosphere.Any improvement in know ledge about dust and be better Known but it is poorly characterized at present.

Volcanic ash is blown in the troposphere or even low stratosphere by explosive eruptions, and the transported depending on its height and on the winds. Ash may stay long enough in the atmosphere to make a few rounds around the elobe.Volacaic ash represents a very iginifcant hazarad for aviation, as it melts at the
engines temperature, causing them to block. An improved knowledge of the $3 D$ distribution of sh would be engines temperature, causing them to block. An improved knowledge of the 3 D distribution of ash would be
of great interest not only to the scientific community but also to the civilians through the improvement of aviation hazards mitigation.

At BIRA-ASB, a new strategy is under development to retrieve for the first time vertical profiles of desert dust and volcanic ash from TIR measurements by AASI. Results of this work are expected to be a great contribution to climate studies and to hazard mitigations.

Long Expertise... and State-of-the-art New Alorithms

The work undertaken at BIRA-ASB on desert dust and volanaic ash benefits from a very long expertise in the simulation of thermal emission and of light propagation in the atmosphere in the presence of gases an
aerosols (the ASIMUT algorithm used in the analysis ofvenus Express data). Thi expertise has been complete by the use of a well-recognised state-of-the-rrt scientific algorithm allowing to model the interaction of aerosol particies with light, not only through absorption and emission but also through multiple scattering (Lidort, RTSolutions). The correct simulation of multiple scattering by a particle requires the knowledge of its size, shape and compostion, which is a true challenge because only few direct measurements of these have been undertaken, and because those properties vary with each dust outbreak event or volcanic eruption. For desert dust and volcanic ash aerosols investigation from TTR measurements, the most commonly used
spectral band is the so-called "atmospheric window" (about 8.3 to 1.5 um). The name of this spectral band
 absorption at about $9.7 \mu \mathrm{~m})$, therefore in the absence of clouds almost all thermal emission from the planet may escape to space, as if going through an open window, while at other wavelengths more light (or energy) is
trapped within the atmosphere by gas absorption (causing the greenhouse effect.).Th atmospheric window is
ned or lookng a a desert dust and volcanic ash aerosols from space because those aerosols have a radiative are (hey case a specific measurable change in radiation) in that wincoow, and that signature remains enenths where atmospheric gases absorb more light, the earososl signature may be present but is partly (or completely) erased by gas absorption above the aerosol layers

Future Developments

here are numerous possibilities for future development of these activities within BIRA-ASB in the coming develop the retrieval of aerosols micro-physical properties s(ize, refractive index, shape

elected References

 tion ofthe bieighteses temperature compored to the applied surface eem absorption lines sisble in the spectrum are due to water vapour, whil
the dee. broad absorption ine around 1030 cm- 1 is due to 0 orone

BIRA-ASB has a long-standing tradition regarding the studies of the atmospheres of the Earth as well as its sister planets Mars and Venus. The study of these Earth-like planets, of which the atmospheres have evolved towards different yet extreme conditions, is a vital part of the understanding of the past and future of our subtle climate system. Indeed, a more detailed understanding of the dynamics and atmosphere circulation on the other planets, of the forces which drive them, and of the interesting phenomena like precipitation, storms, lightning atmospheric photochemistry, and polar vortex occurring on other planets than Earth will eventually lead to an integrated and deep comprehension in atmospheric science, atmospheric dynamics and planetary meteorolog. which will, in turn, benefit the better understanding of similar phenomena happening on Earth.
Earth's solar system has four terrestrial planets: Mercury, Venus, Earth and Mars. During the formation of the Solar System, there were probably many more (planetesimals), but they have all merged with or been destroyed the for俍
 are rectly from the orinal solarnebla this respect Mars and Venus are very simiar to Earth in several aspects such as their composition, but their differences can learn us a lot more.
the outer layer. In contrast to the Earth atmosphere, which is composed of roughly 78% nitrogen, 21% oxygen 0.93% argon, 0.04% carbon dioxide, with very small percentages of other elements such as water vapour, the atmosphere on Mars consists of 96% carbon dioxide, 1,9\% nitrogen, 1,9\% argon, and contains traces of oxygen and water. The atmosphere contains quite a lot of dust particulates giving the Martian sky a tawny colour when seen from its surface.
Venus, on the other hand, has an atmosphere which is much denser and heavier than the one of Earth and whic extends to a much higher altitude. Venus radio observations gathered from Earth published in 1958 showed an amazingly hot temperature, upwards of 600 Kelvin, which was confirmed by the flybys of Mariner 2 in 1962. This high temperature could not be explained at that time. Slowly the idea of an exceptional greenhouse effec emerged.
BIRA-ASB's interest in planetary space missions started from its formation in the 1960 s and the institute has actively taken part in several successful missions to Mars (Phobos, Mars-Express) andVenus (Venus-Express) an provided science support to the interpretation of data from the NASA Phoenix lander mission. The institute wil consolicate its leading position in planetary aeronomy, by being Principal Investigator of the NOMAD suite instruments on the ESA ExoMars Trace Gas Orbiter (EMTGO, launch in 2016)

The success of NASA's Viking mission of 1976 instigated a strong interest at the Belgan Institute for Space Aeronomy towards Mars. The Viking mission was designed to obtain high resolution images of the Martian for evidence of Ifie processes on Mars. Instead. it discovered incredibile chemical processes corresponding to for undenown surface oxidant.

At that time, ESA started the study of mission to Mars called Keplerto perform an inventory of fis atmospheric composition and chemistry. BIRA-AASB proposed a national contribution with a Belgian instrument, a UV-Visile-nifrared optical package, designed to perform limb sounding of the Martian atmosphere.This instrument
was never developed but its concept was proven and published at ESA workshops. ESA finally stopped funding Kepler after the Mission Analysis phase without ever clearly deciding to abandon the project. Howeve the concept interested French scientists from the "Service d'AAeronomie du CNRS" who designed a similad package for the Phobos mission, in collaboration with the Russian Space Research Institute (II).
The Phobos mission was a very sophisticated Soviet misision to Mars and one of its two moons, Phobos. Using two spacecrafts, it combined in situ measurements on and near Phobos and remote sensing of both Mars and when a delegation of IKL vistef P parallel development, BIRA-ASB finally yot involved in the project in 1987, testing of this new instrument, called Aususte This expereriment was devoted to solar occultation spectroscop, of the Martian atmosphere in the ultraviolet through infrared wavelength region. Three filght models of the spectrometer were built in $\mathbb{1}$ and one of them was handed over to BIRA-ASB for testing. One of the measurements involved observations of the Sun at the Pic du Midi Observatory The two Phobos satellites were launched in 1988 . Unfortunately, only one of the spacecrafts, Phobos 2 ,
arrived at the planet in 1989 and obtained a limited set of observations. The AUGUSTE instrument on board the Phobos 2 spacecrat was in operation from the beginning of its orbital fighh around Mars (the first communication session was performed on February 8, 1989) until about the end of the Phobos mission (the last observation was carried out on March 26, 1989). The instrument delivered invaluable information on the water and ozone content of the atmosphere, as well as on the structure of clouds and aerosols. In 1993 , BIRA-ASB and $\mathbb{K} 1$ researchers published the first "tentative identification of formaldehyde in the Martian
atmosphere.".
ddeed, two absorption features were observed in some AUGUSTE spectra, and the scientists
proposed formaldehyde as being the origin of these structures. This had a lot of impacts on the known photochemistry occurring on Mars because formaldehyde is a product of the oxidation of methane, which (2002) showed that the observed structures could be due to an instrumental artefact. Moreover; a recent observation of weak CO_{2} absorption in the same spectral region was proposed by Bertaux and co-workers to explain the features observed in the Phobos spectra
The partial success of this limb sensor encouraged the same Belgo-Franco-Russian team to propose the "Spectroscopy for Investigation of Chararcteristics of the Atmosshere of Mars" (SPICAM) instrument on and led to the "Solar Occultation in the IR" (SOR) instrument, a new original Belgan-led design. A soIR instrument is currenty on board the ESA Venus Express mission (see section "Verus Express" in this chapter). has been selected to be on the next ESA mission to Mars as well: the ExoMars Trace Gas Orbiter mission to be launched in 2016 , as part of the "Nadir and Occultation for MArs Discovery" (NOMAD) suite of sectrometers (see section "NOMAD" in this chapter),

Selected References

 ,

Comparison of Martian spectrum (blue dots) $\mathbf{a} 17 \mathrm{~km}$
 limb altutude
grean of for
conditions

Mars Express (MEX) is Europe's first mission to the Red Planet and even its first planetary mission. It was launched on June 2003 and arrived around the planet on Deceember 2003. BIRA-ASS has been involved in
one of the instruments on board: Spectroscopy for Investigation of Characterisicics of the Atmosphere of Mars (SPICAM) which is a spectrometer with two channels, one for the utraviolet and one for the infaraed
 Institute (IK) in the defintioio of the scientific obbectives. SPICAM retrieves information about the amount of ozone (with the UV sensor at 250 nm) and water vapour (with the \mathbb{R} sensor at 1.38 micron) in the Martian atmosphere for different seasons, using three different observing modes: solar occultation, stellar occultation and nadir measurements.

Spicam Qualification Model.
Filight Model Sensor Unit ofsplcam viewed from above.
The Re Racoustoopotical tunable fiter spectrometer is at top
 points to the elef. Forthe UV spectrometer, the light enters
the mechanical baffle (black), is focused by a parabolic

BIRA-ASB was responsible for the mechanical design, manufacturing, assembly, and integration of the support structure for the individual optical parts, the electronic boards and the cabling, building on heritage from the previous SPICAM instrument on board the Russian MARS-96 mission. To differentiate between both instruments, one often uses the name SPICAM-Light for the instrument on board Mars Express. The name was given after a redesign operation to drastically reduce the mass of the instrument. BRRA-ASB carried out ery specific tasks such as hardware manufacturing of certain subassemblies, surface treatment and optical testing in collaboration with Belgian and foreign industrial partners

SPICAM operates in the UV domain, which is favourable for the detection of Martian aerosols. Bright ice clouds are clearly visibe in the UV against the background of dark Martian soil in nadir observing mode The Martian soil is red in the visible wavelength domain and becomes very dark in the UV due to strong asorption of the UV radiance by ron-containing minerals which are abundant on Mars
The ice cloud appearance has very prominent seasonal variations and spatial distribution. Scientists are deeply Tinterested in the Martian ice cloud distribution and its yearly cycle because the cloud formation is clearly Connected with the Martian atmospheric general circulation and the water cycle. During the northern winter thick clouds cover the Martian North Pole, forming the north polar hood.A As spring progresses, clouds retreat season.
The released water vapour rushes towards the equator where it is picked up by the ascending branch of The released water vapour rushes towards the equator where t is icicked up by the ascending branch of create favourable conditions for cloud condensation. Clouds form the so-called Aphelion cloud belt which s persistent durng the whole northern summer. At the same time clour cover grows above the South Pole
forming the south polar hood. When the northern fall starts, the North polar hood grows and the South polar hood retreats. Due to the highly elipitial orbit of Mars the southers summer is much hotter than the horther one. This is a season of strong dust storms which sometimes even cover the whole planet. Clouds isappear amost everrwhere and survive only above the North Pole. Only during southern fall, rare clouds start to form above high Martian volcannees and the cloud cycle starts again.

Martian solar longitude (Ls)
\qquad Cor solar longitude Ls to indicate the season. Ls indicates the location of Mars in it ortita around the Sunillit is the angle
 Martian summer solstice, 180° at the Martian southward equinox, and

Martian ice clouds: zonally averaged optical depth distribution
depending on the Martian season. Data were accuired during

Water cloud optical depth distributions were obtained during different seasons. Knowledge of the cloud optical depths allows the determination of the water content in the clouds which is very helpul for the better understanding of the Martian water cycle and climate. Figure on the left shows the zonally averaged cloud optical depth distribution depending on geographical latitude and Martian seasons (solar longitude), from the beginning of the northern spring to the end of the northern winter: Each season lasts 90° of solar longtud. SPCAM data gave an opportunity to improve ourknowedge of the Martian dust optical properties in the UV domain. Analysis of the SPICAM nadir spectra accuired during a few dust storms allowed to estimate optica particles scatter light. Contrary to the visisle staterng adsedo the dust clouds are seen as bright features and can even be confused with water ice clouds, in the UV dust clouds are seen as dark spots, ie. they are strongly absorptive. Knowledge about dust optical properties in the UV is important for modeling how much to 5 . Astroiologits use such calcualions to estimate the

Selected References

VENUS ATMOSPHERE EXPLORATION WITHVENUS EXPRESS
Ann Carine Vandaele and Eddy Neefs
With contributions from Arnaud Mahieu, Séverine Robert, Rachel Drummond and Valérie Wilquet

Ater the success of the Mars Express mission, ESA wanted to benefit from the momentum created by its preparation. They immediately started preparing the next mission, this time towards Venus, called Venus Express.To save money and time, spacecraft and instruments design from older missions would be used, e.g. the UV and IR atmospheric spectrometer "Spectroscopy for Investigation of Characterisics of the A Amosphere of Venus". (SPICAV) was developed from its older sister, SPICAM. BIRA-ASB did, however. propose a very new instrument concept, based on the eiont sus of an echele grating and an acousto--Pptica tunable fiter (AOT)
for the selection of the recorded spectral range.The design was accepted by ESA and the "Solar Occultaion in the \mathbb{R} " (SOR) experiment was born and added on the structure of SPICAV.The complete spacecraft and payload had to be ready within 4 years, which is a very short time period to build such a complex assembly

Atrist view of Venus Express orbit injection. (credit: ESA)

Venus Express ESA Missio

 of the Mars Express and Venus Express missions points to the fact that
they were processed very yapidy by EASA. Forvenusu Express.
Spare they were processed very rapidy by ESA. Forvenus Express. Spare
nodels of instruments were used from previous mission Mars Express Rosetta. Venus Express was launched in Novenber 2005 and inserted
into orbit around Venus in Apri 1006 . At the time of writitg. it stit

SOIR barely made it, having sustained some damage during vibration testing which meant parts were replaced its activation close to arrivial atVenus.II f fact, SOIR has even proven to be one of the more ereliable instruments on board Venus Express and is still "alive and kicking".
Venus is a very warm and dry planet with a dense atmosphere composed mainly of carbon dioxide (CO, 96.55°) and nitrogen ($\mathrm{N}_{2} .3 .5 \%$). Chemically atctive species, such as sulfuric bearing gases $\left(\mathrm{OCS}, \mathrm{SO}_{2}\right)$ and
halides (HCI. HF) had aready been reported, but ince measurements had been performed essentially in the mesosphere below 100 km and below the clouds, information about minor atmosphereic constituents, their concentration, reactions, sources and sinks was incomplete. Only scarce measurements had been performed previously above 100 km altitude. SOIR is the only instrument on board Venus Express which can contribute
to the study of this region. to the study of this region.

SOIR performs solar occultation measurements in the \mathbb{R} region (2.2 - 4.3 um) at a high spectral resolution $\left.0.15 \mathrm{~cm}^{\prime}\right)^{\prime}$, better than all previously flown planetary spectrometers. The solar occultation technique allows
oderive unique information about the vertical structure and composition of the Venus mesosphere. The wavelength range probed allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on the vertical distribution of the gases. Most of the SOIR measurements occur at high Northerm pole and its apocenter at about 65.000 km .

SOR has been able to detecta series of trace gases such as $\mathrm{HC}, \mathrm{H}, \mathrm{H}_{2} \mathrm{O} / \mathrm{HDO}, \mathrm{CO}$, and even SO_{2}. Moreover absorption bands of CO_{2} are present throughout the spectral domain covered by SOIR, with intensities varying over a wide range of values. Combining different spectral intervals in which the CO_{2} line strengths differ widely the CO_{2} vertical profile can be obtained from lower altitudes around 65 k to to igher altitudes of
about 170 km . The hydrostaticic equilibrium equation is applied on the retrieved CO density drofis to derive out 170 km . The hydrostatic equilibrium equation is applied on the retrieved CO_{2} density profiles to derive the temperature. These temperature profiles show a permanent cold layer at all lattudes at the altitude of layers, at 100 and 140 km . Such a structure was never observed before, nor predicted by any model.

SOIR observations can also provide information on the aerosols present in the atmosshere of Venus. It is well known that the planet is completely enshrouded in a global cloud system located at altitudes comprised between 50 and 70 km . Different kinds of particles can be found in those clouds. SOIR is particularly designed derive aerosols characteristics (extinction, loading and size) above 70 km

Examples of $C 0_{2}$ density profies (leff) and $C 0$ temperature profiliss (iitht). The inset pan
gives the measurement atitude and the orb

 High hatitude measurements are reddis

SOIR is still delivering quite an impressive quantity of data and wil continue to do so until the end of the Venu .and percentage of these dave been analyed to date and we can be sure tha the instrument still has a lot of discoveries to reveal

Selected References

Structure of Venus' Atmosphere The affiferent layers in an atmosphere are defined basecto there is no stratosphere on Venus: following a troposphere which
extends up to 70 km, which corresponds tot the cloud deck, the extends u to 70 km , which corresponds to the cloud deck, the
mesossphere starts extending into the thermosphere

Observing modes. (credit: ESA)

NADIR AND OCCULTATION OBSERVATIONS FOR MARS' ATMOSPHERE

After the success of the SOIR instrument on board the ESA Venus Express mission, BIRA-ASB started to propose the concept of such instruments for other planetary missions. A similar instrument was part of the payload of the NASA Scout mission called The Great Escape (TGE), which was set up by the Southwest Research Institute (Principal Investigator: : Imes Burch). SOIR-TGE was one of the nine instruments of the ission whose main objective was to characterize the Martian atmospheric escape processes. The ressonsibility of providing the instrument was shared by BIRA-ASB and LATMOS (F. Montmessin). In the end, SOIR-TGE MAVEN, was launched and is now on its way to the Red Planet.

Shortly after, NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite was selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter (TGO) mission 2016. ExoMars is a twofold mission: a first element (TGO, along with an Entry, Descent and Landing Demonstrator Module (EDM)) will be launched in 2016 , while a second element based on a landing platform and a rover will follow in 2018 . The ExoMars program itself has undergone a series of modifications since its launch. Intially a
combined mission of ESA and NASA, it s now a collaboration between ESA and ROSCOSMOS, the Russian Space Agency.The latter will provide the launcher as well as scientific instruments to replace the US ones initially selected to be part of the ExoMars mission.

NOMAD will search for active geology, volanism and life by looking for their atmospheric markers. NOMAD will confine potential source regions and provide crucial information on the nature of the processes involved. NOMAD will aso extend the survey of the majir climatologic cycles of Mars such as the water carbon and ozone cycles, and provide inf

NOMAD is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but aso solar occultation and limb observations (LNO), and an ultravioletvisible channel (UVV), that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. The three channels each have their own Instrument Line of Sight and optical bench, but share Martian atmosphere in the UV, visibe and IR regions covering the $0.2-0.65$ um and $2.2-4.43 \mathrm{~m}$ spectral ranges.

Attists view of ExoMars Trace Gas Orbiter. (credit: ESA

NOMAD offers an integrated instrument combination of a fight-proven concept (SO is a copy of SOOR on and UVIS has heritage from the ExoM ors lander), that will provide mapping and vertical profili information at and UVI has herriage rom the high spatio-temporal resolution.
NOMAD permits the full exploitation of the orbit. From a 74° inclined orbit, the latitudes covered in solar occultation range from $87^{\circ} \mathrm{N}$ to $88^{\circ} \mathrm{S}$ with good revisit time at various solar longitudes. The nadir coverage between $\pm 74^{\circ}$ atitude provides global spatial sampling on average every 3 to 4 sols with varying local times Due to the nature of the orbit, there will be occasional repeated ground tracks offering better tempora sampling of a given region.
NOMAD is the result of the collaboration between Belgian and other European partners. In Belgium, ASB. BIRA leads the team and provided the Principal Investigator. Project Scientist, Project Manager and a stron team of dedicated scientists and engineers. Other Belgian contributions to this project come from the Centre Spatial de Leiege (CSL), the Royal Observatory of Belgium and the Univerity of Leiege. European partners are from Italy, Spain and the United Kingdom. lintially Spain, the second most important contributor after Belgium, was concerned with all the electronics, from design to building: taly was involved in the design an procurement of all periscopes; and UK was designing and providing the UVIS channel. However, due to the
 are performed by Belgian scientists, engineers and industry. OIP (Oudenaarde) is the prime contractor of the instrument, responsible for the builiding of the SO and LNO channels, as well as of the final integration of al subassembies and of the instrument on the spaceccrat. LambdaX (Niveles) is procuring the UVIS channed optics, Thales Alenia Space (Charleri) all the electronics, and AMOS (LLège) some optical components.

Selected References

REMOTE SENSING OF AEROSOLS ON MARS AND VENUS

Valérie Wilquet

With contributions from Yannick Willam

Global monitoring of aerosols in planetary atmospheres can be carried out by nadir observations of ackscattered or reflected light.l. gives a good perception of how the aerosol abundance in the atmosphere varies with time and space. The vertical distribution of aerosols is based upon the measurement of extinction
(absortion + scattering) of a light source (usually the Sun) by atmospheric species and present alons the (absorption + Scattering) of a ilght suurce (usualy the Sun) by atmospheric species and present along the
optical path during occultation measurements. Compared to limb or nadir observations of reflected sunlight. occultation only depends on the ability of atmospheric species to scatter light in the forward direction. Therefore, occultation data can lead to consistent estimates of particle sizes of aerosols as spectral variation of the extinction weakly depends on the shape of aerosols.
If aerosol composition is not well known,it is difficult to obtain useful information on the shape of particles, The best way is to sample the scattering phase functions using Emission Phase function (EPFs) from an orbiter EPF is a practical tool to study aerosol properties consisting in looking at the same point on the planet while

Mars
Suts aerosols are always present in the Martian atmosphere. Their presence significantly affects the thermal Structure of the atmosphere and is a major driver of atmospheric circulations at all spatial scales. Dust in uspension is overall the largest and most permanent source of diabatic heating since it absorts solar radiation at blue wavelengths and heats the atmosphere.

The importance of aerosols in the Martian atmosphere and climate through solar absorption and thermal emission was recognized even prior to the arrival of Mariner 9 at Mars (a NASA mission launched in 1971). events and require large vertical advective velocities to lift dust partictes up to such low pressure elevels.

As mentioned in section "Mars Express" chapter 13, the SPICAM instrument on board Mars Express, partly developed at BIRA-ASB, gives ivvaluable information on the vertical distribution of dust in solar occultation eometry. These observations show detached layers of water ice clouds superimposed on the background Just haze layer. The depth of this haze layer shows dust extending high in the atmosphere during dusty times e poles during the clear season

SPICAM data in the nadir geometry allowed to improve our knowledge about the Martian dust opticad

Dust torm on Mars.
properties in the UV domain since dust clouds show strong absorption and scattering effects in the UV. Indeed the anay sis of SPICAM UV data revealec the ability of this instrument to detect dust storl events and to
derive some constraints on the dust optical parameter.The Martian water ice cloud optical depth distribution related to the atmospheric circulation and important in understanding the Martian water cycle, was also obtained from nadir measurements of the SPICAM UV spectrometer Current efforts aim at characterizin Martian aerosol properties from EPF measurements of the SPICAM UV istrument

Venus
Venus is completely enshrouded in clouds which show an enormous vertical extent of more than 50 km . These clouds are maily found in a permanent cloud deck located between 45 and 70 km of altitude, witt thin hazes above and below. They are mostly composed of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ aerosol particles. The Pionee Venus, a NASA mission launched in 1978 , has shown that the upper haze $(70-90 \mathrm{~km})$, above the clouds laye s composed of submicron aerosol particles with an effective radius below 0.3 um and compatible with a haze consisting of concentrated sulfuric acid (75\%).

The SPICAV instrument on board Venus Express is composed of three independent spectrometers: the UV and IR spectrometers and the SOIR instrument, built at BIRA-ASB. SOIR performs solar occultation observations in the \mathbb{R} and therefore allows characterization of the terminator (day-to-night limit), an up-to now unchartered region of the Venus' atmosshere. As mentioned previously, one of the main advantages of the solar occultation technique is the high vertical reso
longer optical path resulting in an improved sensitivy.

The ability of the SPICAV/SORR instrument to perform simultaneous solar occultations with the three channes allows making use of the full spectral range of the instrument, from 170 nm up to $4 \mathrm{\mu m}$ and taking maximum advantage of the spectral dependence of the solar light extinction due to aerosols. A preliminary study of SPICAVISOIR spectra demonstrated, for the first time above 70 km , the existence of particles with a radiu ending on the altitude in addition to the smaller particles with rad comprised between ~ 0.1 and $0.3 \mathrm{\mu m}$.

From previous missions to Venus, data on the climatology of the upper haze of Vernus are rather sparse. For years of vertical profiles of light extinction by aerosols in the Venus upper haze, from SOIR observation covering the whole latitude range, showed that there is high shor-term (a few Earth days) and long-ter (-80 Earth days) varibility and a clear structure in the latitudinal distribution of the aerosol loading. The
extinction at a given altitude within the upper haze is higher by at east a factor of 10 for observations near the equator compared to those at the poles in agreement with the fact that SO_{2} photolysis is more efficient at low lattudes, a reaction involved in aerosol formation on Venus

MODELLING
rank Daerde

With contributions from Lori Neary

The focus of the modeling work for (neutral) planetary atmossheres at BIRA-ASB has been on the atmosph

Sow on Mars: Developing a Cloud Model for Mars

On 25 May 2008 the Phoenix mission landed successfully on Mars with on board a Canadian LDAR instrument, the first in its kind to operate on another planet. One of its most extraardinary discoveries was showed that the precipitating particices consisted of twater "sice and that their size is necessarily very large, up to tens of microns, which is an order of magnitude larger than any particle detected on Mars before.
We worked with Jim Whiteway of York University (Toronto, Canada), Principal Investigator of the LDAR istrument, to understand this precipitation and its impact on the environment. We developed a microphysical cloud model for Mars and coupled this to a detailed radiative model of dust in the Planetary Boundary Layer PPBL). This 1 -dimensional cloud model described the nucleation of ice particles on a background of dust
particles of various sizes and the subsequent deposition and sublimation of water vapour on and from the ice particles.The model includes many detailed microphysical processes and takes into account particle shape. For comparisons with the LDAR measurements, specific optical routines (T-matrix) are included.
The simulations confirmed the formation of boundary layer clouds and very large ice particles which sediment tt high speed. The precipitating particles have sizes up to $50 \mu \mathrm{~m}$ effective radius which corresponds to ice crystals of length 150 ym. This is comparable to the crystal in terrestrial cirrus clouds, which are formed smulated number densities are of the order of 0.01 particle per cm^{3}, which is comparable to the terrestrial phenomenon of "diamond dust". The cloud model also supported other studies for the interpretation of Phoenix measurements.

Top: Phoenix LDAR measurements of backscatter
 and reaches down to 2.5 km a a 5 5 local tim

Diamond Dust,
is a phenomenon

Map of the surface temperature on Mars as simulated in
GEMM-Mas, around northerm summer solstice. GEM-Mars, around northern summer solstice.
The ghey a areas are the seasonal polar caps, where
 ndicated by the small
anders are indicated.

The Phoenix Lander and LIDAR:
Phoenix was a mission in the NASA Scout program, led by the Universit,
of Arizona. It landed suceesfully on Mars on 25 May 2008 and remained operational until 2 Noverember 2008 IIt was the first lander in the polar
region of Mars. Phoenic caried a Light Detection and Ranging (LIAR) region of Mars. Phoenix carried a Light Detection and Ranging (LDAR) instrument developed in Canada for tre
composition of the lower atmosphere

GCM for Mars:
General Circulation Models (or GIobal Climate Modes) are numerical
computer models in which the atmosphere is reperesented by a large
 well as other atmospheric processes can be
weather, limate, and atmospheric compositio

Mars Global Atmospheric Modelinn

model with the increase in omputational capacities 3 -dimensional seneral codel was successful at its time, but developed for Mars since the mid-19905. II In 2006 IRRA-ASB started to work with dohn C . (Jack) McConne of York University who had recently supervised the development of the Global Mars Multiscal Model (GM3) This model was buit on the framework of the Global Environmental Multiscale Model (GEM) applied for terrestrial weather prediction by the Meteorological Service of Canada. BIRA-IASB continued to refine this model and it was renamed into GEM-Mars: the "Global Environmental Multiscale model for Mars". GEM Mars is a grid-point model extending from the surface to 150 km , with Mars atmossheric physics replacing
the terrestrial physisis.This comprises radiative transer through an atmoshere of CO and dust Dust is the the terestrial physics. This comprises radiative transfer through an atmosphere of CO_{2} and dust. Dust is the dominant thermal agent in the lower atmosphere. Recently ative dust processes were implemented in GEN
Mars in which dust is ifted by strong near-surface winds as well as in dust devils.

GEM-Mars simulates the annual formation of the polar caps on Mars and its effect on the atmospheric pressure. The model aso contains routines for heat transfer in the soil (including a subsurface ice table), treatment of the atmospheric surface layer and of the turbulent planetary boundary layer, the water cycle (including water vapour, clouds and frost), and atmospheric chemistry.We recently started detailed validation of the simulations for ozone, oxygen airglow and carbon monoxide. GEM-Mars will be applied to support the Nadir and Occultaion for MArs Discovery (NOMAD) instrument on the ExoMars Trace Gas Orbiter (TGO) see section "NOMAD", chapter 13 .

Selected References

MASS SPECTROMETRY ON ROSETTA

ohan De Keyser and Frederik Dhooghe

the course of the work with mass spectrometers on stratospheric balloons, a collaboration started between Emest Kopp of the Physikalisches institut of the Universitiat Bern and the BIRA-ASB mass spectrometry team under Etienne Arijs. As a consequence, the Institute was invited to participate in the construction of a mass sectrometer that would fly on Rosetta, ESA's comet rendez-vous mission.The team in Bern had a particular interest in comets as they had been responsible for the Giotto neutral and ion mass spectrometers under he leadership of Hans Basiger and Peter Eberhardt. The BIRA-AASB mass spectrometry team, together with Mass Spectrometer (DFMS), a high-resolution mass spectrometer: DFMS is part of the ROSINA instrument package on Rosetta. DFMS has three detectors: a Linear Electron Detector Array (LEDA, built by BRAA-ASB and the Belgian IMEC industry), a channeltron, and a Faraday Cup. A prototype, an engineering model, and 2 fight models have been built. While one of the fight models has been mounted on Rosetta, the other ne resides in the CASYMIR test facility in Bern for calibration purposes. BIRA-ASB was responsible for erforming low-temperature tests to assess the operating linits of the instrument in deep space. Additionally a lot of effort has gone into the development of software for the data calibration.
The Rosetta mission consists of an Orbiter and a Lander (Philia). The spacecraft was launched on 2 March 2004 from Kourou (french Guyana) with an Ariane rocket. In order to make a rendez-vous with a comet on Its jourmey toward the Sun, Rosetta entered into an orbit with an aphelion of around 5 AU (Astronomical Units). This requires a a arge change in velocity, which was achieved by gravity-assisted fly-bys of tearth in 2005, Generator technology, the only way to provide sufficient power was to equip Rosetta with huye solar panels (32 metres tip to tip).
On its way Rosetta encountered the two interesting asteroids Šteins (2008) and Lutetia (2010). Rosetta's target comet originally was 46PMNirtanen, but due to a launch delay another target had to be chosen: 67P/ Churyumov-Gerasimenko. Rosetta started its approach of the comet with a maneuver in May 2014 to get up close from August onwards. The comet will reach its closest approach to the Sun in Ausust 2015 . During the mission, the Rosetta Orbiter will explore the environment of the comet, including the bow shock, the cometosheath and cometopouse where the interaction between the comet and the solar wind takes place, ad it will aso spend considerable time in the cometary coma with some passes down to about 1 km from teuch down on the nucleus The lander will provide "ground truth" measurements about the nucleus

The DFMS instrument on board Rosetta, a mass spectrometar
with high mass resolution. B RRA-ASBE contributed to the LEED

华

The quarty of the DFMS instrument on board has already been demonstrated by its ablity to measure the flux and composition of the spacecraft outgassing. This includes fragmentation products of the hyyrazine in order to be able to distinguish it from comet material, especially during early comet operations.
The BIRA-ASB team aims at understanding the coma chemistry, In particular, one of the goals is to be able to estimate the source production rate and the source composition at the nucleus surface from coma mease the chemistry and photochemistry in the coma since th that reauires sauficieng the comet nucleus undergo photodissociation and the products may further react. If measurements are obtained sufficiently close to the nucleus, so that diffusion across streamlines does not matter, this technique can be used to assess the outgassing inhomogeneity, both in terms of gas production rate and in terms of composition. A related research objective is the study of the dust and ice grains released from the nucleus; volatile gas escape from Such grains may constitute a so-called "extended source" of coma material

 on 3 Ausust 2014 from ad
(credit: ESA/Roseta/MPS)

 (

The boundary between the coma (the region coseopause the the comet) that is dominatet dy neytracas and ions of cometary

 comet) that is dominated by neutrals and ions of cometaryorigin, and the space outside where solar wind ions dominate. orign, and the space outside where solar wind ionf sominate
Electric currents flow throught this boundary surface so as $t o$ eclude the interplanetary magnetic field from the diamagnetic wind ions out of the cavity, ust tike the hull of a boat keeps out

SCIENCE
AND APPLICATIONS

SATELLITE TRAJECTORY FORECASTING

Paul C. Simon
predicting the moment of re-entry of a spacecraft subject to atmospheric drag. Even though the upper atmosphere is extremely rarefied, due to the velocity with which a satelite travels, the
collisions with air molecules are frequent enough to create an appreciable drag force. If the orbit is non-circular the air drag is much greater at perigee than at apogee, the orbit contracts and becomes more nearly circular. If
 gradualy, so that the satelite slowly spirals inwards. In this way, satelte drag measurements alow to cazcura the atmospheric density at perigee altitudes
The re-entry of a satelte is sometines a source of anxiety as was the case, in 1979, for Sklab I (77 tons).The alysis of the evolution of the mean altitude and the daily variation of the revolution period of this satellite howed the influence of the II -year solar activity cycle.

The knowledge of the physical structure of the Earth's upper atmosphere i.e. the vertical profiles of density and temperature above 150 km altitude has been largely extended using the techniques of the orbital variations of artificial satellites. In this matter, an analytical theory has been developed to calculate the atmospheric density from the analysis of variations of the orbital period, giving all possible values to the physical parameters of the problem. In particular, this method allowed to determine very accurately the densities in atmospheric egions when the density scale height gradient is important. This method was in particular applied in the mean thermosphere, at a time when data were still scarce in this atmospheric region.

The physical parameters describing the upper atmosphere are subject to different types of variations. These variations, and in particular those which are linked to the geomagnetic and semi-annual effects, were subject to further research.

Atmospheric drag leads to a apoge lowering
leading for moderatele eccentric orbit to leading for moderatel eccentic
the circualurisition of the orbit

Selected References

SPACE WEATHER

Michel Kruglanski and Neoophytos Messios

The Heliophysics System Observatory (HSO) showing current
operating missions missions in development, and missions
operating missions, mission
under stuyy (credit : NASA)

The Sun provides the Earth with a quasi-steady source of energy, but, on the other hand, it is aso an active star responsible for periodicilly stormy outbursts causing disturbances in our space environment and on Earth ejections) , ejections). When directer
the upper atmosphere.
Space weather can be defined as the conditions on the Sun and in the solar wind, as well as in the Earth's magnetoshere ionosphere and thermosshere that can inferce te performace and will of spec borne but also ground-based technological systems and can endanger human life or heath.

The impact of space weather on our society has long been known e.g. disruptions of telegraph systems due to solar storms were seen in the mi---nineteenth century. However, since then, we have greaty increased our sensitivity to space weather as technological systems play a more critical role to the functioning economies and societies around the globe. As a result, nowadays, numerous sectors are potentially affected by space weather. These include sectors relaying on space-based technologies (eg, broadcasting, weather
service, navigation) but also other sectors such as power distribution and resource explotation, especilly when operated at high lattudes. The effects of space weather are observed in the degradation of spacecraft performance, reliaility, and lifetime. Space weather amplifies the heath risks for astronauts participating in manned space missions. It asso affects operation in the aviation sector and influences the radiation doses by the crew. In case of extreme space weather events, the effects on ground can include damage and disruption to power distribution networks, decreased pipeline lifetime and interruption of radio High Frequenc communications.

BIRA-ASB's long-term goal regarding space weather is to increase the space weather awareness among the concerned sectors, including industry, poicy makers and general public.It it achieved by providing space hazardous space environment and its effects.

Space Weather at BIRA-IASB: a Historical Overview

 on the study of the radiative space
It started with the Institute's participation in the four ESA's TRapped Radiation ENvironment Development (TREND) studies (the three last led by the Institute). The main objective of TREND was to improve the eets on a spacecraftan and its components

The TREND studies identified the limitations of the existing Earth's radiation environment models and demonstrated the need for their continuuus update based on regular new in situ measurements. During these sudies, the soffware package UNIRAD used by ESA when preparing space missions (for the estimation of diation exposure and spacecraft degradation) was improved and extended.
A large effort was also devoted to the development of a comprehensive Fortran subroutine library, called UNLLB, with functionalities related to the calculation of magnetic coordinates, adiabatic invariants, coordinate transformations, field line tracing, mirror point alititudes and magnetic drifit shell determination.
The emergence of the World Wide Web led to the development of a SPace ENVironment Information stem (SPENVIS) for ESA under the leadership of the Institute. Operated since 1996, the SPENVIS systen provides a world wide access to a large spectrum of models related to the space environment.

In the following years, the concept of space weather became more important in Europe, leading to a rapilly growing space weather community, As part of this evolution, the institute participated to one of the Space Weather Programme Feasibily Studies initiated by ESA in 1999 and the subsequent Space Weather Applications Pilot Project. In this framework, the institute developed prototype Space Environment Yellow Pages allowing someone to search and preview space weather data sets avaiable on the Internet. It also Participated to the design of the Space Weather European Network (SWENET) providing access to piot service applications and data through a web portal and web services

By then, the European Commission was also getting concerned about space weather. Actions were initiated In the framework of the European Cooperation in Science and Technology (COST) in order to improve the etworking among the European space weather scientists. The European Space Weather Portal (ESWeP) hosted and maintained at the Institute is one of the outcomes of these actions.

```

```


Distribution of SPENVIS users per country for the vear 2013.

SPENVIS web page.
258 chapere

In more recent years, Europe's independent access to accurate information regarding space weather hazard nitiated the European Space Situational Awarenesss (SSA) programme including dedicated space weather segment. The Institute participated to ESA studies for the development of the SSA Space Weather Precurso Service Network and its preliminary operation.This resulted in the implementation of the SSA Space Weathe also took part in space weather research studies funded under the 7 th Framework Programme for Researg and Innovation (FP7). In particular. the Institute coordinated the proiect COronal Mass Eiections and Solar Energetic Particles (COMESEP) providing an alert system forecasting space weather impacts.

Prominent Service Activities

The Space Environment Information System (SPENVIS)
The Space Environment Information System (SPENVIS) has been under continuous development by the nstitute for ESA sine 199 , prof a a serfiendly web-ased interface to models for accessing the

SPENVIS has today a mature user community that employs the system for mission analysis and planning educational support (used by technical universtities in their educational programs) and scientific applications Its global success estabilshed SPENVIS as an expert system. The system had more than nine hundred new registered users in 2013 with about five hundred ative users on average per month. SPENVIS enioyed its 10000th registered user on 26 February 2013! Most of its users come from ESA Member States, but there is aso a significant number of users from outside Europe, especially from the United States, Turkey, Canad South Korea and China

A number of SPENVIS User Workshops has been organised by the Institute in order to bring together the users, model developers and the SPENVI team. In 2013 a workshop took place in Brussels and was particularly successful with more than eighty participants.

A new system called SPENVIS Next Generation is currently under development.
SSA Space Weather Coordination Centre (SSCC)
The SSA Space Weather Coordination Centre (SSCC) is located at the Space Pole in Belgium since 2013 It provides the first Eurropean space weather helpdesk, with operators available to answer questions about coordinates the provision of space weather services available either at ESA Data Centre or at the various federated sites.

The SSCC monitors the net and provides first-level user support with the help of scientific experts in the fets of solar weather, space radiation, ionospheric weather and geomagnetic conditions. SSCC recently provided support for the launch and insertion manoeurre of the GAA mision, and for the Venus Express

COMESEP Alert System

 ntervention and was built under the three-year EU FP7 COMESEP project.

The system includes newly developed tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. Alerts are trigeered by solar phenomena such as CMEs and solar flares. After the automatic detection in solar data of any of these transients, the different modules of the system communicate ordder to exchane displayed online.The system provides notifications for the space weather community.

Websites
COMESEP Alert System
European Space Weather Portal (ESWer)
Space Environment Information System (SPENVIS)
Space Environment Ifiormation
$\mathrm{htpsi} / / / \mathrm{mw}$.spenvis.oma.bel
Next Generation SPENVIS (SPENVIS-NG)
http://spenvis ngeeul
SSA Space Weather Service Network
htto://swe.ssa.esaint/
Trapped Radiation ENvironment model Development (TREND) Study
hatpp/frendiaeronomiebeltrends/mainindexshtml

elected References

Crogenic Infared Spectrometers and Telescopes
Cor the A Amosherere CRISTA. (creditit NASSA)

The notion of "data assimilation" was developed in the meteorological community during the 1960 s following increased avalibility of meteorological satellite instruments, and the increase of computational capabilities
The erem "assimilation" was introduced to denote a process in which observations distributed in time are The term "assmimation" was introduced to denote a process in which observations distributed in time as the state of the atmosphere Since 199 । and the launch of the U flow to determine as accurately at possibe the number of satellite e atmospheric sounders has increased, allowing the application of data assimilation to models of atmossheric chemistry.The data assimiation technique has emerged as a valuable tool to monito atmospheric composition in a changing atmosphere.

Data assimilation started at BRRA-ASB around 1998 under the leadership of Dominique Fonteyn, who supervised the PhD thesis of Quentin Errera. Their first study focused on the assimiation of stratospheric aerosol observations with a stratospheric transport model, using the four dimensional variational (4D-Var) assimilation method. At that time, it was clear that this was the best assimilation method yet developed bu aso the most complicated to set-up. The aim of 4D-Var is to optimize model intial conditions to minimize a "cost" function that measures the misft between the model state and a set of observations given over a
time window Efficient optimization methods usually require the knowledge of the cost function as well as its sradient. The complexity of 4D-Var is associated with the calculation of this gradient, which requires the development of the "adjoint" model which represents the transpose of the Jacobian of the model.

The model was developed further by implementing a stratospheric chemical scheme consisting of 14 chemical reactions and 41 chemical stratospheric species. The assimilated data came from the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) flown with the Space Shuttle in 1994
 the following species were assimilated: ozone ($\left(O_{3}\right)$) intric acid $\left(\mathrm{HNO}_{3}\right)$, $\mathrm{CaC}-11$, methane (CH_{4}), nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$), dinitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ and chlorine nitrate ($\left(\mathrm{ClONO} \mathrm{O}_{2}\right.$). Another good reason to use the CRISTA data was the good contact we had with the CRITA team atter our first meeting at a COSPAR symposium held in Nagova (apan) in 1998.
The assimilation of CRISTA measurements showed that the "analyses", ie., the chemical fields procuced by The assimiliation of System. were in good agreement with independent (ie., not assimialefed) observations. A
remarkable result was that the assimiation was able to constrain the unobserved species hydrogen chloride hese two species.
BIRA-ASB has continuously improved this system, now known as the "Belgian Assimiation System for Chemical ObsErvations" (BASCOE). It has been applied to observations from the ESA Environmental Satellite (ENVISAT) and the NASA Aura Earth Observation Satellite (EOS), to perform several studies the calibration ozone, and a case study of a major dynamical event in the Arctic stratosphere.

During this period emerged a frutful collaboration between Quentin Errera and William A. Lahoz (at that time at he Universty of Reading, UK; now at NLLU, Norway), involving the assimilation of stratospheric ozone dati and the use of Stratossheric data such as ozone, methane and water vapour (from
models) to understand the chemical and dymamical evolution of the stratosphere.

The stratospheric chemical scheme of the BASCOE system was also implemented into a research version of the Numerical Weather Prediction (NWP) model developed by Enviromment Canada, thanks to an ESAUnded project led by Richard Ménard. This resulted in the first NWP system to include a fully online and and chemistry.
Several peer-reveeved papers and a contribution to a well-received book on data assimilation have resulte
from these two collaborations.
BASCOE is also used within the pre-operational atmospheric component of the European programme Coperricus Atmosshere, which aims at monitoring atmossheric composition. In Coperricus, BASCOE delivers daly analyses of stratospheric ozone as well as other species related to ozone. The analyses are produce
routinely with a delay of 4 days from the time the observations are made. They are used by the Globa Atmospheric Watch (GAW) service of the World Meteorological Organisation (WMO), which publishes a Ai-monthly bulletin on the state of the stratospheric composition. This is illustrated in Fig. 1 , which shows the distribution of nitric acid $\left(\mathrm{HNO}_{2}\right.$) above Antarctica on several dates during the Antarctic winter 2014 based on BASCOE analyses.

In the coming years, the stratospheric chemical scheme of the BASCOE system will be implemented in the chemical module of the assimilation system of the European Center for Medium Range Weather Forecast (ECMWF). This system provides daly analyses and 5 -days forecasts of the chemical composition of the atmosphere and ECMWF hopes to improve significantly its representation of the chemical state of the
stratosphere thanks to this chemical scheme developed at BITA-ASB.

Selected Reference

DETECTION OFVOLCANIC ERUPTIONS

Nicolas Theys and Hugues Breno

Volcanic eruptions can emit large quanties of aerosols (silicate ash, sulfuric acid, ice) into the atmosphere as well as several trace gases, such as water vapourr carbon dioxide $\left(\mathrm{CO}_{2}\right)$) sulfur species $\left(\mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}\right)$ and alimate, both at ocal and global scales, depending on volcanic cloud composition and injection height

While the immediate surroundings of a volcano can be threatened by lava flows and falling rock fragments volcanic aerosols and gases can strongly affect the environment, climate, human heath via its impact on ai uality,and society, 1 cally but also over Iong-distances ($>1000 \mathrm{~km}$ from the volcano). In paritiana, victanic as and block the engines, causing the planes to stall.

Remote measurements of volcanic gases and aerosols from satellite nadir sounders was pioneered in the nid-seventies when it was shown that SO_{2} measurements in the UV spectral range could be made by the Total OZone Mapping Spectrometer. Since then, measurements from space have undergone an appreciable in support of scientific resesarch but also in support of crisis management related to volcanic eruptions. Indeed, thanks to their complete global spatial and temporal coverage, they provide measurements even during the most dangerous on-going eruptions. Over the last decades, a multitude of satellit-based instruments operating in the UV-visible, near infrared, and thermal infrared have been used to monitor and study volaanic emissions in the atmosphere. Owing to improvements in instrumental performances and characterisics in erms of spectral and spatial resolution and coverage, not only SO_{2} has been measured but other less bundant volcanic gas species could also be detected from space ($\mathrm{H}_{2} \mathrm{~S}, \mathrm{BrO}$ and very recently CO). More pportantly direct detection techniques of volanic aerosols (ash and sulfuric acid) have also become avalible, especially with the advent of hyperspectral infared sounders.

Research activity related to the detection and monitoring of volcanic emissions has become increasingly inportant at BIRA-ASB since the years 2000s. The emphasis has been on the continuous improvemen Of SO_{2} retrievals from UV-visible sensors as SCIAMACHY and GOME-2, towards accurate estimation of SO_{2} amount, but also of the altitude of the SO_{2} plume. In addition, a study aiming at the determination of temporally-resolved SO_{2} fluxes has been recently undertaken demonstrating the potential of satellite
neasurements to analyse underlying eruptive mechanisms. Paralle research on satellite monitoring of reactive capacity of the atmosphere.

Over the last few years, BIRA-ASB also developed the Support to Aviation Control Service (SACS), which aims at making optimal use of current satelitie sensors in support of volcanic hazard warning. An important difficulty in mitigating volcanic hazard to aviation comes from the fact that fine ash can be rapidly transported and cross major air routes. In this respect, the recent eruption of the Icelandic Eyiafalalijofkull volcano in 201 is a perfect example of how the dispersion of a volcanic cloud can critically affect air traffic at the continenta Scale. SACS is a near-real time system for the detection and monitoring of volanic emissions of ash and SO_{2} It provides an essential and free source of information to a wide community of users in the context of cril
aviation and volcanic activity surveillance. SACS has been developed and continuously improved over the last years by BIRA-ASB, in collaboration with the Free University of Brussels (ULB), the Royal Netherlands Meteorological Institute (KNMI), the German Aerospace Centre (DLR) and the European Space Agency (ESA) funding agency). At the time of writing, SACS integrates in a single system satellite data products from four instruments operating in the UV-visible (GOME-2, OMI) and thermal infrared (IASI, ARS). These sensors are on board European (MetOp-A) and American (Aqua and Aura, flying on the A-Train) platorms and have notifing the users by e-mal in case of exceptional volcanic emissions. SACS is a global system that proved to be very useful over the last years to monitor the dispersion of volcanic plumes atter explosive eruptions.

Website

Selected References

Ash plume from the 2010 eruption of Eyjiafiallaioikull volcano. (Reuters/Lucas lackson).

TECHNICAL SUPPORT AND EXPERTISE

Eddy Neefs, Jeroen Maes, Sophie Berkenbosch and Johan Bulcke

BirA-ASB electronic workshop in the sixities.

Eddy Neefs and Johan Bulcke

For many of the scientific efforts performed at BIRA-ASB, technical support is crucial. Whether our scientists a active in theoretical research, modelling or data analysis, or implied in experimental aeronomy in the laboratory or by means of ground-based or spaceborne instruments, a variety of technical needs arises from their work. Examples of technical support are the selection, installation and maintenance of IT (information technology) infrastructure, onground software and onboard firmware development, electronics and mechanics design prototyping, manufacturing and testing, and low-level instrument operations. This expertise is provided by the engineering team and IT service.
Engineering has been present in BIRA-ASB from the early beginnings, as part of the department for Applied Aeronomy. This department was for many years led by Dirk Frimout until he left to ESA in 1978 to become Belgium's first astronaut. Originally, the department also hosted the IT division, but with the steep growth of this discipline and the increasing importance of computers in science, engineering and IT became two independently managed groups in the institute, still serving though one common interest: allowing scientists to perform studie ad experiments in the field of aeronomy with up-to-date technical support and expertise.

NFORMATIONTECHNOLOGY

History

hormation technology has been part of the daly activities at the institute almost from its inception. In the early days, this was linited to the use of some of the first computer systems on the market as dediciated hooratory equipment. Quite soon, however, this evolved into the use of computer systems to automate data processing and to compute the complex mathematical equations of atmospheric or chemical models. In present-day scientific research, the powerfu IT infrastructure has become as much of an indispensable tool as pencil and graph paper were 50 years ago.

The institute has always been at the forefront of tecchnology, be it in electronics, mechanics or computing. It stherefore not surprising to see that the first computers aready appeared at the institute during the 1960 s, at a time when for most people they still were in the realm of science fiction. At that time, the systems were managed by people from the engineering department, who had experience with electronics equipment.Later on, the praticial use of these systems for calculations was in the hands of' calculators: staff members who had the dedicated task of doing the complex calculations and data processing demanded by the scientists. Over to the programming of the first computers in languages such as Fortran and Basic.
During the 1980s and 1990s, the computer systems became more and more commonplace, with the Personal Computer' replacing the existing centralized mainframe- and minicomputers. These systems were sill managed by engineers or by the scientists themselves. It was only in the middle of the 90 s that the first dedicated IT support personnel appeared.

Until the end of the 90 s, TT was still frimly embedded in the engineering department and was offered as an added service, complementary to the engineering tasks. During the course of the last decade, the use of computing exploded and the IT service finally evolved into an independent department within the institute.
Over the last 30 years, the collaboration between the 3 institutes of the Space Pole intensified.As the 3 institutes have very similar needs what T is concerned, some of the larger $T T$ projects were executed in a common tamework, named AMABEL. The AMABEL project gave birth to several generations of supercomputers, fie collaboration.

Activities
m is basic office automation which consist primarily of the iT one finds in most enterprises: destop or laptop computers, the programs which are used on a daily basis (like word-processors, e-mail, etc.), internet connectivity and all supporting servers and services. A second categry consists of more specilized IT services, which are specific to the support for operational tasks, such as data processing. A third category is project-bound and concerns it assistance in the form of data management, web services and general IT consultancy.

Today the IT department has a full-time staff of 9 persons to execute all of its tasks. Among the profiles we find experts in networking, high performance computing, infrastructure management, personal computing data management and web services

Infrastructure

The Institute has always been at the leading edge of the market for IT material. State of the art equipment is necessary to remain at the top in the fast moving world of scientific research. This has always been realized in close collaboration with the maior computer manufacturers in the field, so much so that we have had severa occasions where new generations of computer servers were installed on-site before they became general available on the market.

Several high-end systems have graced the data center of the Institute over the years. Some of the most Severa high-end systems have graced the data center of the Institute over the years. Some of the most
interesting computers have been, in order of agee: the 18 BM 1800 system (the first system and really only useable by electronics enthusiasts), an HP 2100 minicomputer with a huge (!) 32 KiB memory, the HP 1000 minicomputer (used as ground support equipment for 2 shuttle missions), a UNVAC 1100 mainframe and the Convex $\mathrm{Cl}, \mathrm{Cray}$) $916, \mathrm{SGI}$ Origin and Atix supercomputers.
Because of this long history, the institute has closely followed the advancement in digital electronics and seen an increase in computer calculating power of 10^{10}, i.e. we have now 10000000000 times more compute capacity than in the eariest days.

The same evolution is seen in the explosion of scientific data at the Institute. Where we started out with tand-writen measurements, creefilly perned down in notebooks and on graph-paper, we now manage an ooment, we have some 300 terabyte (the equivalent of 60000 DVD's) of data that are permanenty stored and at the disposal of the scientists for their work

This is a long step up from the data and programs being stored successively on punch cards, paper tapes, huge ape reels and refrigeratorsized hard drives (of I MBB).

These improvements have not stopped the scientific research of always needing more capacity, The growths of The TT infrastructure and advancements in technology have barely been able to keep pace with the continuous rowth of data volumes and with the improvements in scientific processing techniques.
These needs have required a transformation from the computer infrastructure from an almost experimental a with excie new early days to its present day state of a professional data center functioning 24 hours, 7 days without interruption.

some figures of the current infrastructur
Compute cores (processor)
performance >4 Tflops*
Data storage >300 terabyte
Network bandwith: 10 Gbits s (internet: 1 Gbits)
Tflops means terallops. Flops stands for Floating-point Operations Solecter can pertorm measure for computer performance (how fast Id. Teraflops means 10^{2} flops

An FPGA, Field-Programe Electronics play a key role in modem spaceborne and ground-based instrumentation as they are ofter component designed to be configured by a u user after remotely controlled by a digital telecommanding interface, they produce data and housseeeping streams to be collected and rapidy treated or monitored, or they are equipped with controlling intelligence. Moreover, nowadays, almost all space instruments contain some microprocessor or fPGA based internal inteligence, The Laboratory for Electronics of BIRA-ASB has in-house facilities and tools for the major electronic an firmware design phases.
The electronics lab at BIRA-ASB has gone through an enormous evolution. In the early years, electronics for scientific instrumentation consisted of discrete componentss transistors, hybrid operational amplifiers, resistors and condensers. Programming of e.g., balloon-Corne equipment was based on mechanically orivent timers, diata

Micro- pico- and nanosatellites are (very) smal a rutificil satellites. The
difference is based mainly or mass michesatil tes have

 regular satellite usually has a mass of several hundreds of kilograms

and logic devices such as gates and flifflops found applications as instrumentation grew more complex and digital remote communication became a necessity. Heary led batteries were replaced by the much lighter smaller, and much more reliable batteries based on nickel and cadmium and later by lithium batteries.

Athough the capabilites of the first microprocessors were negigible compared to what processors can perform today, the new techniques were introduced and applied from the very beginning. Step by step, the engineering department gained experience in the development of onboard software for such embedded
systems. In the middle of the 1990s, BIRA-ASB launched a balloon-borne mass spectrometer that was controlled completely by microprocessors, carrying a multitasking operating system, capable of receiving extual telecommands from ground and of transitting its data digitaly to ground, where it was processed and stored in real-time.

With the arrival of the microprocessor also the personal computer and the workstation made their appearance the electronics lab. The development of onboard soffware has gone hand in hand with the design of computer-based ground support equipment capable of controlling the scientific instrumentation ever since. Where drving electronics for scientific equipmenti in the severites was rather spacious and power consuming, more easy access to space applications. With the rise of micro-, nano- and even pico-satellites, this tendency

MECHANICAL DESIGN AND CONSTRUCTION

Eddy Neefs, feroen Mes Sophie Berkenbosh Emil Van Ransbee

 and Dennis NevejansEvery spaceeborme or ground-based instrument has a mechanical structure in which its electronics or optical devices are housed and protected. The Worlshop for Mechanics of BRRA-ASB is well equipped for the desig and construction of mechanical parts dedicated for ground, balloon or spaceborme instruments. For 2 D and 3D mechanical design, workstation-based CAD (Computer Aided Design) tools are used, supported by CAM (Computer Aided Manufacturing) software to convert it into commands for numerically controlled miling machines. Since three years, prototypes can be quickly built by the institutes 3D-printer to check the feasibiiiy of the design

While during the early years the mechanical workshop focused on building the hardware in-house, using a suite of lathes, milling, drilling and plate handling machines, with time the focus has shifted more and more towards design for space applications, where complexty and light-weighting became prominent issues and hence, collaboration with speciaized industrial partners for manufacturing became a need
BIRA-ASB's mechanical engineers are specialized in mechanisms for rotation or translation of optical and mechanical elements structurl desin work per matics and space quified mechaic

In the last two decades, BIRA-ASB's involvement in satellit--borne instrumentation has increased dramatically Compared to ground-based or balloon equipment, spaceborne applications require completely differen design rules. Instruments have to resist the heayy vibrations and shocks experienced during a rocket launch and they have to cope with the harsh radiation and thermal environment in space. Both the electronic an mechanical development need much more time than it used to, as well in design as in manufacturing an

MPORTANT CONTRIBUTIONS TO SCIENCE INSTRUMENTATION

 Eddy Neefs, Jeroen Maes and Sophie Berkenbosch
As BrA-ASB was founded at the time of Europe's first steps into space research, the contributions of its

 engineering team followed the same technological path of evolution as is European counterparts.In the beginning the focus was put on stratospheric balloon flights (the first balloon launch of a BIRA-IASB instrument took place in 1967) as Europe did not possess a mature launching capability at that time, like the United States and the Soviet Union did. These balloon filghts enabled the instiute to perform atmospheric $300 \mathrm{~kg} . \mathrm{In}$ its heyday up to four of these payloads were built and launched into the stratosshere each year fom different locations. These launching sites were situated in Southerm France, Spain, and even Texas, Brazil and French Guyana.

Another step to true space ressearch was taken by participating in several sounding rocket missions. From 969 up to 1974 , small payloads, developed at BIRA-ASB, were launched into sub-oritial space with rockets ke Sklyark. Skua. Super Arcas and Centaure.

With the e etablishment of ESA in 1975 , Europe slowly moved towards a mature space powerin close collaboration wit N NASA. One of ESA's biggest achievements in it searly yerrs was the realization of the laboratory SPACELAB sOLSPEC and the Grile Spectrometer for the SPACELAB fight in 1983 (see chapter 7).
Towards the nineties, and as the engagement in balloon filghts was slowly winding down, the institute geared up its space activities and realized a whole fleet of instruments for a large range of measurement domains. SOLSPEC was launched another time to space in 1992 on board the EURECA Platorm, Europe's retrievable
carrier together with the new ORA instrument (see section "EURECA", hapter 7 . The fight of Dirk Frimout with space shuttle Atlantis in 1992 had several instruments of the institute on board. The instrument SOLSPEC was launched again several times as part of the ATLAS fighhts on board the Space Shuttle in 1993, 1994 and 995.

Qualificaion model of Rosetta DFMS spectrometer
developeed by
BRPA-ASB

MR station was a Russian (first Soviet) space station which circled no the Earth from 1986 until) 2000.1 .1 twas weed for different

The Institute did, however, not restrict its collaboration to ESA and NASA but also partnered up with Russid As a resut, the large MrAAS instrument was instaled on the outside of the Russian MIR station in 1995. The ill-fated Mars-96 satellite had SPPCAM-S, SPPCAM-E and MAREMF on board as contributions of the institute. The Mars-96 mission unfirtunately crashed shortly after its launch from Russia's cosmodrome in Baikonur.
Howeverall workon this ratest mission was not lost because some ofthe technoleses were However, all work on this latest mission was not lost because some of the technologies were redeveloped into a new instrument:SPICAM-Ight was placed on board ESA's frist interplanetary probe Mars Express launched
in 2003.WWith this instrument, the BIRA-ASB engineering hardware left the Earth's orbit for the first time.After 10 years in orbit around Mars, the spectrometer still keeps sending scientific data to Earth.

It would be the first but not the last interplanetary hardware of the institute to leave Earth's orbit. One year later, in 2004, ROSINA on board of Rosetta began its long journey to comet 67P/Chury umov-Gerasimenk (see chapter 13). This complex mass spectrometer samples and analyzes the gas molecules inside the tail of the comet while it approaches the Sul

One of the Institute's masterpieces is the SOIR channel which is part of the SPICAV instrument embarked on board ESA's Venus Express spacecraft. The other part of SPICAV consists of a copy of SPICAM-Light, thi time ouffitted with a shutter mechanism to protect the instrument against the fierce direct sunight around Venus. The engineering team of BIRA-IASB was responsible for the complete electronics and mechanics of

SORR, including its onboard firmware, and has complemented this work by taking in charge the operations the instrument. Since its launch in November 2005 , SOIR continues to perform nominally and has aready discovered many interesting features in the atmosphere ofvenus, including the first observation of the 628 CO_{2} istopopologue band.Today SOIR has become the predecessor of a new instrument, called NOMAD, that ©

Also the SOLSPEC instrument has been redesigned and rebuilt to become part of the SOLAR platform on Belgian User Support and Operations Centre, IOcated inside the institute (see chapter 16).
hthe field of space radiation research, a new compact spectrometer was developed: the Energetic Particle Telescope, shortly EPT. This instrument was launched in 2013 on board the PROBA-V satellite and relays realne radiation data of the Earth's low orbit directly to B.USOC. A technological spin-off to measure radiation ider different angles called 3DEES is currenty under development.

In many of these projects the engineering team has been closely working together with Belgian industria partners such as OPP, Vermaert Space (now QinetiQ Space), Alcatel-ETCA, Lambda-X, AMOS and IMEC. Also intense technical colaborations exist with Belgian universities and partner research institutes or industrials throughout the world.

Isotopes are diffierent "versions" of the same chemical element. The

PROBA Aatellites are microsatel lites. These satellites are developed for
tarring instruments around the Earth. P POBBA stands for PRoiect for carrying instruments around the Earth. PROBA stands for PRoject for
On Board Autonomy. The satellites are the result of a collaboration of

Integration of the Electronic Particles Telescope (EPT)

SPACE OPERATIONS AND KNOWLEDGE MANAGEMENT Didier Moreau

To be able to command their instruments, scientists had to make a request to the Payload Operation Directo after which they could directly manage their instrument from the Houston Operations Center using a very primitive display. They could follow their instrument on their own EGSE (Electronic Ground Support Equipment sing their own software. SPACELAB I turned out to be a great operational and scientific success for marst Space Fight Centre in Huntsville (Alabama).

HE ATL

Didier Moreau and Christian Muller

The hitchhiker project has been established in 1984 to develop and operate a carrier system for low-costand quick reaction accommodation of secondary payloads on the NASA Space Transportation System (STS). The management of the project was the responsibility of the NASA Goddard Space Filigh Center (GSFC). For he missions $\mathrm{STS}-65,66,85$, and 95 , it was necessary to remotely command the Total Solar Irradiance (TSI) strument.To achieve this, both an internet link and an Integrated Services Digital Network (ISDN) link were made between the Royal Meteorological Institute's Space Remote Operation Centre (RM/SROC) and the Goddard and Marshal Space Flight Center (GSFC/MSFC). The latter was provided by BIRA-ASB through Stual Iocal Area Network BRA. ASB also provided the Interconnection Ground Subnetwork (GS) for the S.ROC SOLCON/HH missions.

This paved the way to a more decentralized operational approach. In Brussels, the SROC at the Royal Meteorological Institute supported two instruments: the Solar Spectrum experiment (SOLSPEC) and the Solar Constant experiment (SOLCON). This positive experience led the Belgian Science Policy Office (Belspo) to propose, in the frame of the emerging ESA contribution to the International Space Station SS) commercailisation programme, a joint venture wic Serations centre inder born.
the beginning of the space age it was evident that payload operations were managed by scientists. SPUTNIK I for example, the only scientific instrument, which was a radio emitter, was switched on the launch pad by Konstantin Gringauz, who later became a prominent space scientist. On the American side, Jam

 a ace
 eaper his sion maximize the scientific return

The next step came in 1976 , when BIRA-IASB had three instruments (GRILLE, SOLSPEC, and ALAE) accepted on the SPACELAB I platform (see chapter 7). At that time, it was officially required to have each SPACELAB instrument controlled by an astronaut. The ESA SPACELAB programme was to be completed by one test flight, our demonstration flights and twenty operational flights. At the time of the first flight in 1983, ESA supported only half of the test flight, the other one being operated by NASA, while the later flights were entirely operated by NASA. As this first flight had more than 70 instruments on board, having these operated by individual stronauts was unmanageable. It could not be left to the Houston flight controllers either, as was done in the APOLLO programme. Therefore, NASA created the POCC (Payload Operation Control Centre) and ESA assisted the European scientists by creating the position of ESA Ops (ESA operational engineer)

THE BELGIAN USER SUPPORT AND OPERATIONS CENTRE

 Didier Moreau and Marie-Claude Limbourg

The ISS CoLumbus national usocs network.

Facility Responsible Centre (FRC):

Is the organization to which the overal responsibily for a pay oad on
board the International Space Station is delegated by ESA. Its functions board the International Space Station is delegated by ESA. Its functio
ocus on payload systems aspects and are realted to all phases of

Begiums involvement in the ESAIISS optional program is mainly driven by the opportunity for Belgian scientific communites to receive support from and to access a unique research facility to develop, implement
and conduct their fundamental and applied research activities. Since 15 years now, Beespo and the Space Pole invest in the development conduct operations in the EUropeani facilities on board ISS, the Europeane Sppace Agency decided to implement conduct operations in the European facitites on board
a decentralized and hierarchical user centre approach.

Belgium fully embraced this decentralization approach allowing its scientific community to develop, implement realze and valorise experiments inside and outside the European Columbus facilit after its lunch. Enterin for ATLAS misions and located inside the Space Pole premises.
The B.USOC as a decentraized centre for the new ISS project was then funded and implemented insic the BIRA-ASSB premises. As part of the ISS agreement between ESA and Belgium, this centre began it implementation in 1997 with funding by Genera Support Technology Programme (GSTP) and took ove
the operational responsibilites of SROC, specificaly in terms of NASA space shuttle operations. The official service contract between Belgium and ESA was signed in 1999 and B. USOC became an official operationa node of the European ISS ground segment network.

During the pre-Columbus launch phase, in order for the B.USOC to prepare its first assigned SOLAR and PCDF operations as Facility Responsible Centre (FRC), the Belgian Govermment funded some of the moss productive and challenging scientific ESA ISS missions such as the Belgian OdISSea mission and the Prom $15 S$ ad twe expeiments composing the SOLAR latim SOVM and SOLSPEC:

ODISSEA AND CERVANTES MISSIONS Marie-Claude Limbourg and Didier Moreau

The first complete operations for the B.USOC were done during the OdISSea Taxi-fight mission of the Belgan astronaut Frank De Winne in November 2002. For this ambitious mission, more than 50 scientific and industrial teams participated leading to an activity level comparable to SPACELAB missions. The OdISSea experimental programme was the most important ever reairized on the International Space Station during a axi-fight mission. For the first time, the American segment was used in conjunction with the Russian segmen. The OdISSea Misision has thus been the first step in coordinating ISS Operations with multiple partners

At that period, neither NASA nor Russia had done payload operations across multiple control centres and continents. After this mission, B.USOC was fully integrated in the ESA, NASA and Russian communication hetworks and delivered al the data requested by the Scientific Principal Investigators to their user home bases (UHB). This last concept (UHB) allows the scientists, with the support of the B. USOC, to monito their experiment and record the raw scientific data they requested using commerial internet and their own computers at their premises. The OdIISea Mission presented a remarkable opportunity for all involved team to acquire an understanding of ISS operational processes and an experience in using new operational tools that were precursor to those used at present to support European Columbus pay load operations.

Following OdISSea, the Cervantes mission was performed by Spain with the support of ESA between October $18^{\dagger n} 2003$ and October $28^{\text {n }} 2003$. During this mission, ESA astronaut Pedro Duque eerformed a large scientific programme (18 experiments, among which 6 Spanish and 7 Belgian, covering the same research fields as for Ddissea.). The Ground Segment made a reuse of the previously implemented infrastructure and B.USOC tandled almost the same responsibilites during the operations. On the other hand, there were also some mprovements the operational team working at B.USOC also involved people from the SROC and from mission as a further opportunity to extend the know-how of the Belgian operational community

Frank De Winne during the OdIISSea mission in

SOLAR \& ASIM
Alice Michel and Nadia This

SOLARRSOLSPEC Payload on ISS. (credit: NASA)

Space Pole
Consisting in three federal scientific institutions:The Roval Observatory
of Belium, the Royal Meteorological lnstitute and the Belgian Institute or Space Aeronom

The next major development of the B.USOC happened in February 2008 when the European Columbus module was docked to the ISS. It carried, as an extermal payload, the SOLAR package constituted by three instruments monitoring the solar output from the extreme UV to the middle infrared. One of thes
experiments, SOLSPEC, has been developed by SACNRS and BIRA-ASB (see section "SOLLPEC", chapter 8)
B. USOC is Facility Responsible Centre (FRC) for the SOLAR payload. SOLAR was designed to operate for 18 months, with a possile mission extension by up to three years. Atter that, it hould have been returned to Earth, but its smooth operation and flow of valuable data prompted the scientists to request an even longer Earth, but its smooth operation and flow of valuable data promptee the scientists to request an even longer few months), the SOL-ACES and SOLSPEC science teams received an acceptation from NASA and ESA to extend the SOLAR mission up to end of February 2017.
Since 2012 winter solstice, a full solar rotation is observed at each solstice by making a slight change the ISS attitude. Atter long negotiations, this is the frrst time that NASA accepts to modify the IS attituc for a scientific cbjective. A very important contribution from the SOLAR bridging measurements is the solar instruments in orbit (e.g. a comparison of ESA's SOLAR - SOL-ACES data with NASA's SDO/EVE data). The bridging aready shows that these particular datasets match extremely well with each other. This is an exciting time for the solar scientific team because the ful solar rotation observation gives researchers a more complete dataset to work with for their studies on the impact of the sun's radiation on our planet's environment.
The next important external payload that B.UsOC will manage is ASIM (Atmospheric Space Interaction Monitoring Instrument) ASIM is an ESA science instrument assembly to be flown on the Columbus Externa Platorm Faciity (CEPF) of the ISS (Intermational Space Station).The launch is foreseen for early 2016. The ASIM concept has been proposed by the Danish National Space Centre with the objective to observe Transient Luminous Events that occur in the Earth's upper atmosphere accompanied by thunderstorms in the lower atmosphere.These events are known as blue jets, sprites and elves, the phenomena were first observed in 1989.The ISS is considered a perfect platform from which to enhance our knowledge about them. ASII is designed to be accommodated on the starboard deck location of the CEPF (Columbus External Payload
Facility) platform. As for SOLAR, B.USOC will be the FRC for this proiect.

PICARD
Michel Anciaux and Claudio Queirolo
The Sun and its impact on Earth's climate is a topic of prime importance for BIRA-ASB, and ina more generic way for the Space Pole, since a long time. The Picard mission for observing the Sun was proposed in 1998 by the Service d'Aeronomie of the Centre National de Recherche Scientifique (SACNRS, now LATMOS) and
on 3 December 2004, the Centre National d'tudes Spatiales (CNES) endorsed this proiect. The PICARD on 3 December 2004, the Centre National d'titudes Spatiales (CNES) endorsed this project. The PICARD nission was named after the French astronomer of the 17 th century Jean Picard who achieved the first made during the Maunder minimum a period characterized by an absence of sumsonts and a significant cold climate.

MULTI-PURPOSE TELEROBOTICS

Karim Litefti and Rachid Abiii

Since its establishment. planetology research (see chapter 13) has always been part of the scientific activities of the BIRA-ASB. Addressing the challenges related to space exploration, we improve our knowledge, our lechnology, creating new industries, and we help to create a peaceful setting with other nations. Before embarking on a long and difficult exploration programme, it is important to establish a very solid foundation Sor this business to be successful and the ISS is avital component to achieve this. The ISS is a test bench and springboard to the exploration of space beyond low Earth orbit and help to prepare planetary exploration and specifically through robotic approach.

METERON (Multi-Purpose End-To-End Robotic Operation Network) is an ESA-led international space project For advanced telerobotics technology demonstration involving the ISS. METERON will provide answers to how fiture exploration mission scenarios need to be designed, if crew is located in a planetary orbitit (Moon, Mars, Asteroid, etc.) and how robots must be controlled in a planet or celestial body.To test various scenarios and to validate the related technologies, robots on Earth will be controlled from the interior of the ISS durin

The overal goal of METERON is to set up a simulation environment to allow ground controlers in a Control Centre or astronauts on ISS to be able to simulate
ocated on the ground through the ISS enviromment.
This project has been assigned to B. USOC by ESA in 2012 as a preparation to future "planetary" operations at Space Pole and to capture know-how on new communications protocols such as the "Disruption/Delay at Space Pole and to capture
Tolerant Networking (DTN)"

Several space agencies and institutions work together to achieve the goals of METTRON, including ESA NASA, ROSCOSMOS, ESOC, CU-Boulder and B.USOC. B.USOC tasks and responsibilites vary along the project phases, and focus on operational and ground support of activities conducted on board ISS.

Atrist view of the MEETRON project concept and
obiective

Disruption/Delay Tolerant Networking" (DTN The DTN program is a step toward building a reliable interplanetary
 tolerant networks can improve electronic communications by storing
data when a connection is intercupted. and fowarding itto destination using relay stations

Selected Reference

PICARD is a CNES/ MYRIADE microsatellite sending back data needed to improve models used for forecastin solar activity. It was designed to take simultaneous measurements of parameters such as the speed at whic the Sun rotates, the radiation it emits, the presence of sunspots and its shape and diameter, to help scientists understand the relationship between them. These models also help to evaluate the influence of the Sun on the dynamic chemical processes governing balances in the Earth's atmosphere. The Picard programme also has other objectives, namely to study the Sun's internal structure using heliosesismology techniques and to the impact of solar varability on the processes governing balances in Earth's atmosphere, notably the

Intially scheduld for 2003 , PICARD has been launched on $1^{\text {n }}$ Uune 2010 at the start of the current solar diameter, differentiad rotation and solar constant to investigate the nature of their relations and varability. Since the PICARD launch, the payload data centre (CMS-P) is operated by the B.USOC. Concretely, this is the first time that the French space agency (CNES) decentralized operations for M MYRIADE microsatellite, the CMSis therefore an exception in the French microsatellite programme. The main responsibilities of the B.USOC are to program the payload according to the scientific objectives and the operational and technical reauirements data. At the end of the mission in March 2015 , ater a period for massively reprocessing the data, the scientific products will be transferred to the IAS-MEDOC for long term archiving.

PREPARING THE LONG TERM SPACE DATA PRESERVATION

Christian Muller and Didier Morea

Preserving scientific data is challenging for academic entities and govermment agencies given the tremendous
volumes, sources, and types of satellite data potentially involve.To properly preserve data, you need the right volumes, sources, and types of satellite datal potentially involved.To properly preserve data
tools and methods to ensure all potentially relevant data is captured and remains intact.

Knowledge Management: PERICLES

To apprehend this important challenge for the future, B.USOC decided to valorise his acquired expertise by providing data and operational expertise to several projects funded by the European Union under its Seventh Framework Programme (ULISE, CUBIIT, PERICLESS).
PERRCLES (Promoting and Enhancing Reuse of Information throughout the Content Lifecyle taking account of Evolving Semantics) aims to address the challenge of ensuring that digital content remains accessible in an environment that is subject to continual change. This can encompass not only technological change, but also
changes in semantics, academic or professional practice, or society itself, which can affect the attitudes and interests of the various stakeholders that interact with the content. In this context, the international Space Station (ISS) is the most complex and powerul laboratory for research in space. its utilization concern scientific disciplines ranging from Life to Physical Sciences as well as technology developments and offer perfect material to se for the development and implementation of new tools.
The PERICLES Project uses SOLAR as its space case and has begun the inventory of the avalable SOLAR data through a snapshot of a period. These data include all documents produced during SOLAR operations ancillary data and the entire science data stream. PERICLES will also archive the scientific data and products derived by the Principal Investigators from the raw data which B.USOC transfers to their UHB's. PERICLES takes a 'preservation by design' approach that involves modelling, capturing and maintaining detailed and
complex information about digital content, the enviromment in which it exists, and the processes and policies to whichit is subjeet.The project will delivera a preservation prototype, as well as a portfolio of models, services tools and best practice for the support of preservation ecosystem and lifeccle management. Broader take-up of the project results will be encouraged through Communities of Practice and engagement with industry.

The Spot/Pléiades National Data Portal

in 2006 , the Belgian and French govermment signed an additional cluuse to their initial agreement related to the participation of Belgium in the Spot Programme allowing Belfium to participate in the Pleíiades programme as well. In this context, a distribution agreement has been signed between Spot Image (legal distributor of Féides data) and the Belgin Siexce Poiy Office (Belspo)

The role of Belspo will be to manage large volumes of data, to provide easy access to an archive and to render he investments made by the Belgian Goverrment proftable. In order to support Belspo achieving these goals, B.USOC offered a global solution to manage the archiving of Pléades images.

The goal of this infrastructure developed at BRAA-ASB is to store the requested products (processed images) elivered by ASTRIUM and to redistribute these products to the user community (approved by the Bespo/ Stereo management),

Websites

The "National Data Portal" developed by the B.UsOC is a web interface allowing to display images and metadata stored on the database. Authenticated users have the possibility to download these products. On top products.

CONCLUSIONS AND PERSPECTIVES Martine De Mazière, Johan De Keyser and Didier Fussen

Aeronomy needs observations to advance. There are three types of measurements in which we excel. First,作基 are the process-oriented experiments carried out in the laboratory and accompanied by measurements the long-term changes in our environment, some of natural origin and some due to anthropogenic activities and their impact on natural processes. Long-term monitoring is typically an activity to be maintained by the national governments. Nevertheless, the Institute's basic funding is marginally sufficient to maintain this ver demanding activity. Additional funding is short-term and project-based. There is no specific recurrent budget ne to support long-term monitoring, despite recommendations from high-level organizations like the Ozone Research Managers from the World Meteorological Organization.
A third area of expertise is in observations from space. The history of the Belgian Institute for Space Aeronomy demonstrates how strongly aeronomy research is coupled with space since the very beginning of the Institute The scientists have been deeply involved in the development of instruments and missions, as well as in the processing and the validation of space data. But they also have to face the short-term nature of space mission and of the accompanying funding. For instance, the funding for research related to a space experiment generally stops quickly after the end of the mission, but at that time usually a lot of calibration, validation and re-processing work still remains to be done. There is often a lack of continuity in ESA missions in a given research domain, and it is hard to build or maintain core competences if one has difficulties to bridge funding gaps. The creativity of the Institute's scientists, however, has been able to find ways to deal with this reality, but in the current hars economic conditions this is getting very difficult. A stronger impact of the Begian State on space policy could be beneficial.

Observations imply instruments. Ground-based instruments must not only be maintained but also innovated as echnology progresses. A good collaboration between the scientists setting the requirements and the engineers who design and build the instruments is of primary importance. For instruments flying on spacecraft, the cost and political complexity of ESA missions necessitate the formation of instrument consortia, with the attendant political complexities and requirements to find a role for Belgian industry. In the future the Institute hopes to capitalize on its expertise in optical instruments for atmospheric sounding and in mass spectrometry. An example of this strategic approach is to consider the demonstration of CubeSat missions such as PICASSO that might offer an independent capability to acquire useful scientific data from space. Another example is the development of compact optical remote sensing payloads for deployment on unmanned aerial vehicles, The Institute must maintain its technological and engineering capabilities if it wants to provide instruments as

Principal Investigator, and also if it wants to ensure a position in instrument consortia as Co-lnvestigator.This wir require a further strengthening of its partnerships with industries, preferably Belgian industries, especially whe thinking about satellite instruments.
Aeronomy also needs theoretical studies and numerical simulations of the radiative, physical and chemical processes in space and in the atmosphere, for acquiring a better understanding and to support the planning and he interpretation of the observations. Data assimilation has become a very powerful technique. The advances knowledge, especially regarding the coupling between the different Earth system components, and the growth of data sets becoming available from satellite, with always higher spatial and temporal resolution, require corresponding evolution of the models. They become extremely complex and demanding as to computer capacity. Also for this field of aeronomy research, consortia building is becoming more important.
A strong IT support for data management and high-performance computing is indispensable: this requires Iardware investments, software development and experts' support! More investments are needed, and where feasible, common investments with external partners must be encouraged to enhance the cost-efficiency
he expertise acquired by the Institute should be put at the disposal of the community - Belgian and internationa. This idea of "benefit for the citizen" is a bit ambivalent. Of course, there are the scientific publications and books hat have been produced by the Institute's scientists, as well as the outreach activities for a larger public. But addition, in some situations, an actual service can be developed that benefits the citizen or particular user communities. BIRA-ASB has set up such services (SACS volcanic ash monitoring system for aviation, the Space Stuational Awareness Space Weather Coordination Centre ...) and it will support such activities in the future. Some of these services, however, might become very application oriented (with the application not necessarily belonging to the scope of BIRA-ASB's research) or possibly commercially oriented. In these cases, one should consider to spin-off such activities

Next to national partnerships, and hopefully more opportunities for collaborations with Belgian universities in he near future, it remains important for BIRA-AASB to build and consolidate partnerships at the internationa level, with research organizations from abroad and with other space agencies. In the current international context, it is no longer essential to engage in partnerships with ESA only. It is natural also for institutes like IRA-IASB to look for launch opportunities and participation in satellite experiments beyond ESA. This raise f course the question of the availability of Belgian funding and support for non-ESA missions or instruments.

The present financial situation, in which the Institute relies for more than $60 \%{ }^{(1)}$ on external funding, is very demanding and hardly feasible in the long term. From the administrative point of view, it implies a need for extensive project management support. From the scientific point of view, it means that the Institute must remain competitive and win contracts at the international level to maintain its current level of activities. This stimulates dynamism and progress but endangers the freedom in research.
h the current programmatic context, in which more attention goes towards applied research with direct societal and economic impacts, this endangers the opportunities to maintain fundamental research. Nevertheless, basic research is absolutely essential as a precursor for future applied work! For example, there remain profound difficulties in the theory of plasmas, such as those encountered in the ionosphere, the magnetosphere, or the interplanetary medium. Also in the lower atmosphere, there are still very fundamental questions, e.g., about the gas-to-particle partitioning in the formation of secondary aerosol from isoprene, and the aerosol formation n clouds (aqueous phase processing) in which phase separation in aerosols, mobility, and surface adsorption processes play roles that are badly known up to now. BIRA-ASB scientists have been pioneers in addressing some of these aspects, but there is stili a long way to go. It is worth noticing that fundamental research not only addresses well identified questions but it also targets more exploratory domains. Planetary aeronomy is a nice example, where even the presence of some minor gases in a planetary atmosphere has not yet been discovered or confirmed. From the experimental point of view, the development of new measurement principles is an mportant scientific field well beyond a simple technology demonstration. The question is whether the current science funding mechanisms still leave room for such fundamental research.
But even if fundamental research is required in itself, without a societal application pointing directly at the orizon, a fundamental research component remains essential even in the application- or service-oriented ctivites. A good example is climate change research. BIRA-ASB will cer tainly move forward in the direction Cimate services because they are asked for by our society that is being faced with a changing climate. But can delver bbective services only because it is ar esearch that is at the basis of these services. The monitoring databases collected through sustained monitoring, the current involvement in projects
 essential building blocks for the climate research and services that will be further developed at BIRA-IASB and at the Belgian federal level.
The primary resource of BIRA-AASB is human capital. For many years, there was no dedicated curriculum in our universities for young scientists in the discipline of aeronomy, despite the fact that environmental issues and high-tech space applications rank high on todays political agenda. Therefore, the Institute was obliged eithe There existed a similar lack in the engineering studies in Belgium, with insufficient attention to aeronautics an space engineering.
To overcome this limitation, several members of BIRA-ASB have committed themselves to give courses at
to universities dedicated to certain aspects of aeronomy and space physics (U. Gent, KULeuven, UCL,VUB, ULB ULg ...) and to attract PhD students to aeronomy-related studies. The creation of a "Master in Space Studies" programme has contributed to this effort as well.
The scientists and project engineers of BIRA-IASB should have the opportunity to evolve on a flexible career path. Typically, scientists and project engineers have to spend many years in a rather uncertain position, with heir job depending on the success or failure of project applications. From those who can become statutory
personnel, it is expected that they are ready to evolve from a pure scientific research position to a scientific
management activities, and to participation in national and international scientific committees. At the same time senior scientists should guide the younger contractual scientists to acquire new experience in subjects of current strategic importance and to build strong research careers that benefit the Institute as a whole.
One can state that the Belgian Institute for Space Aeronomy is resolutely moving forward in a changing and challenging research environment, and it is ready to face these challenges with confidence and aim for excellence.

Abirieatid	Vie Pasale	${ }^{\text {dew }}$	Etim Maxis	Gamanle befe
	cole	Decaffmeyer L. Deceuninck Hilde	Egeiderom	Illar Mis
Aliel			Etueateredy	munot teiene
Stiche				
		Oidemer		
		Oedeneme	Fenteoter	Memmat
	(cemeremils seen			
	Cotene			Hizete chisial
	Cosarem homud	Oemulir phipe		\pm
(ingen chisine				
	Cosen Mema	Detam franos	ficsen	Hutrans
come		Oenlespere	cita	Inese inim
	cole	dem		
		Soinder	Coind	
			cein	
		Oommil		ckemes ind
coicle		comen		,
	Donemefely	Sutime		, knimemet

Midematiminael	Comation	
Morimssif finct	Reantilien	Stiol
Mosersatie		
Mosememens		nhestudas
		Hemomen
Neestesurd	cole	Waineminotee fusul
Noen	隹	Vindememereme
Nisofeluer		Vaneonimer
Moill	Rentes	
Oeman fic		
	Stiole	Van eme
	Stion	van
Pateme		Van Rearenemeadem
		Vanaie enn
	Stemen	Vandenobisd
	Stion	
Sain		Vanaeemm aea
Sede	Ster	Thambeide

[^0]298

${ }^{\text {30 DEES }}$	3 Dimensional Energeicic leectro Spect
${ }_{\text {ate }}^{\text {ATVAR }}$	
ACEF-FS	a
${ }_{\text {ARESET }}^{\text {AREOET }}$	A Aloso R Robotic NeETWork
ALIAE	Atmoshericiclyman-lphat Emisisions
${ }_{\text {Altus }}^{\text {Allus }}$	
${ }_{\text {Altab }}^{\text {Alub }}$	Atmospheic Limbt Tacke forl hestigatio of the Upcoming Stratosphere
AMOS	Advanced M Mechanicala and opitial Sysiems
AMPTE/RM	Active Magnetossherici Paticie Traee Exploer/ Ion Release Moulue
${ }_{\text {ata }}^{\text {AOS }}$	Aosol opital eepth Sen
${ }_{\text {AOTF }}$	
Apollo	Americas Progat foro Oritial and Lunar Landing Oepeations
ASIM	Atmospheric Space Interation Monitioing Instument
${ }_{\text {atas }}^{\text {atas }}$	Hosphericicaboratory for Application and Science
ANDA Net	Autumatic W Whister Deetector and Analyer Network
${ }_{\text {B }}^{\text {B.usoc }}$	Eegia Seer Suporand deperatios Seente
	Sele
${ }^{\text {Bespo }}$	Beliain sience pooicy
	Ballon Metercompariso Campaign
${ }_{\text {colc }}$	
${ }^{\text {Brams }}$	Belgian Redio Meteor Stations
	nex xlene
${ }_{\text {cole }}^{\text {Bvoc }}$	
	Compute A Aided Design
${ }_{\text {Cam }} \mathrm{Calp}$	
cams	Copericicus Atmospheicic Monitoring Senice
CASSMIR	CAlibation Sysem for the Mass spectrometer Instument Rosind
${ }_{\text {cco }}^{\text {cco }}$	Caree Coupled deive
${ }_{\text {CPPF }}^{\text {cla }}$	
${ }_{\text {ctes }}^{\text {c-CC }}$	Communit Earth System Model
	Chlorofuroratan
,	

${ }^{\text {CME }}$	Corona Mass jicition
${ }_{\text {cmos }}^{\text {cmsp }}$	anplemenay Meal-oxide-Seniconductor
	de M Msoin scientinueve Pica
cnves/atmos	Nationald dela
${ }^{\text {comesa }}$	Commitee on the Meteorological Efectiof of Statasph
cossar	
cost	cooperation in Science and Tectrology
covos	Comite detudes sur ies consequences des Vols Stratspherí
${ }_{\substack{\text { cem } \\ \text { CRISA }}}^{\text {ces }}$	Chimie Physidue Moleculuire (oft the unive
sivoc	
CrRES	Combined Release and Radation Effects Saillite
CSL	Cente Spatial de lièe
${ }_{\text {cse }}^{\text {çibl }}$	
cubould	Colorad univesity Buulder
DAM	Disitia and Absorber Modules
DeMs	Double Focusing Mass Seectrometer
DLR	Deutsches enentum fuir ulut und Raumaht
Sisp	Deiense Meteoroogicia Saieliele Program
${ }_{\text {dotm }}^{\text {doas }}$	ential oricar fbsopition Spectioscopy
סTN	
EASOE	European Acticic statasphericic ozone Experiment
${ }_{\text {EC }}$	European Commisision
(enw	Electochenticar oncentration Cell
ECV	
EDM	Entr, Dessentand landing Demonstrato Mo
	Electrial Giound Suport guipment
	European minoterers SCAfier Ratar
60	Europar tauncter developmentoganzato
	ENVITommenta Satele
cu	zzone Researach Coordiating Unit
${ }_{\text {cesem }}^{\text {Ees Aura }}$	Earth obsening Sysiem Aura
${ }_{\text {EPT }}$	Eneregeicic aritice e elesco
St	eos

ESA	European Spaceagency
(esoc	
Eswep	
	Euupean union
EvV	Extrem U Ultraviet
ExOM	Sogy on Mars
fa	Federal Aviation Administation
Fasisf	Fiowing Aterstow-Selected lon Fow Tube
${ }_{\text {fatms }}^{\text {fat }}$	Foowing Ateis low- Tandem Mass Spectometer
$\underset{\text { fal }}{\text { ffi }}$	
FNRS	Fonds Sationald del 1 Rechercte Scientifique
${ }_{\text {P7 }}$	Framework Proiect 7
${ }_{\text {Preat }}^{\text {Prac }}$	Ogrammable Gate Arays
fRPoon	Fireball eecovery and fielerlanetay Obsenation
н	Fourier Tansorm
${ }_{\text {FIR }}$	Fourier Transtam Infared
GAA	
${ }_{\text {GAN }}$	${ }^{\text {Global Atmosh her Watch }}$
${ }_{6}^{6 c \mathrm{cos}}$	
${ }_{\text {GOP }}$	Gome Data Processor
${ }_{\substack{\text { GESA } \\ \text { GEM }}}^{\text {cese }}$	
${ }_{6}^{\text {ceos Shem }}$	Goddard farth obsenin SSyssiem. Chemical
${ }^{\text {G60ss }}$	$\mathrm{G}_{\text {Global Eath obsenation of Systems }}$
${ }_{\text {GMES }}^{\text {Gev }}$	Giga electio
GNSS	
GOME	${ }^{\text {GIobal O2one Monitoring Experiment }}$
${ }_{\substack{\text { comos } \\ \text { cosat }}}^{\text {cose }}$	
GPs	G Global positioning System
$\substack{\text { geruan } \\ \text { GSEC }}_{\text {che }}$	Gcos Reference Upre
${ }_{\text {csip }}^{\text {cist }}$	
Haliog	
HDF	Hiearchical Data format

$$
=
$$

Science is moving from one astonishment to another. Aristoteles

[^0]:

