The sources of CO include direct emissions and photochemical production due to the oxidation of hydrocarbons. The dominant CO sink is its reaction with OH. CO has therefore a strong influence on the oxidative capacity of the atmosphere and on the removal of air pollutants.
However, most chemistry transport models fall short of reproducing constraints on OH levels derived from methyl chloroform (MCF) observations.
In this study, we prescribe different OH fields compatible with MCF data in the IMAGES global model to infer CO fluxes constrained by IASI CO data. Each OH field leads to a different set of optimized emissions. Differences of 40% in the top‐down global anthropogenic CO emissions are found when varying the OH levels, and even larger differences are found regionally, e.g. in China and the United States.
Comparisons with independent surface and aircraft observations indicate that the inversion adopting the lowest average OH level in the Northern Hemisphere (18% lower than the best estimate based on MCF measurements) provides the best overall agreement with all tested observation datasets.
References
- Müller, J. ‐F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P. ‐F., Clerbaux, C., Sweeney, C. (2018). Top‐Down CO Emissions Based On IASI Observations and Hemispheric Constraints on OH Levels. Geophysical Research Letters, 45(3), 1621–1629. https://doi.org/10.1002/2017GL076697